/* fmsq.c This file is part of a program that implements a Software-Defined Radio. Copyright (C) 2013, 2016 Warren Pratt, NR0V Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. The author can be reached by email at warren@wpratt.com */ #include "comm.hpp" #include "fircore.hpp" #include "eqp.hpp" #include "fmsq.hpp" namespace WDSP { void FMSQ::calc() { double delta; double theta; std::vector impulse; int i; // noise filter noise.resize(2 * size * 2); F[0] = 0.0; F[1] = (float) fc; F[2] = (float) *pllpole; F[3] = 20000.0; G[0] = 0.0; G[1] = 0.0; G[2] = 3.0; G[3] = (float) (+20.0 * log10(20000.0 / *pllpole)); EQP::eq_impulse (impulse, nc, 3, F.data(), G.data(), rate, 1.0 / (2.0 * size), 0, 0); p = new FIRCORE(size, trigger, noise.data(), mp, impulse); // noise averaging avm = exp(-1.0 / (rate * avtau)); onem_avm = 1.0 - avm; avnoise = 100.0; longavm = exp(-1.0 / (rate * longtau)); onem_longavm = 1.0 - longavm; longnoise = 1.0; // level change ntup = (int)(tup * rate); ntdown = (int)(tdown * rate); cup.resize(ntup + 1); cdown.resize(ntdown + 1); delta = PI / (double) ntup; theta = 0.0; for (i = 0; i <= ntup; i++) { cup[i] = 0.5 * (1.0 - cos(theta)); theta += delta; } delta = PI / (double) ntdown; theta = 0.0; for (i = 0; i <= ntdown; i++) { cdown[i] = 0.5 * (1 + cos(theta)); theta += delta; } // control state = FMSQState::MUTED; ready = 0; ramp = 0.0; rstep = 1.0 / rate; } void FMSQ::decalc() { delete (p); } FMSQ::FMSQ( int _run, int _size, float* _insig, float* _outsig, float* _trigger, int _rate, double _fc, double* _pllpole, double _tdelay, double _avtau, double _longtau, double _tup, double _tdown, double _tail_thresh, double _unmute_thresh, double _min_tail, double _max_tail, int _nc, int _mp ) : run(_run), size(_size), insig(_insig), outsig(_outsig), trigger(_trigger), rate((double) _rate), fc(_fc), pllpole(_pllpole), avtau(_avtau), longtau(_longtau), tup(_tup), tdown(_tdown), tail_thresh(_tail_thresh), unmute_thresh(_unmute_thresh), min_tail(_min_tail), max_tail(_max_tail), tdelay(_tdelay), nc(_nc), mp(_mp) { calc(); } FMSQ::~FMSQ() { decalc(); } void FMSQ::flush() { p->flush(); avnoise = 100.0; longnoise = 1.0; state = FMSQState::MUTED; ready = 0; ramp = 0.0; } void FMSQ::execute() { if (run) { double _noise; double lnlimit; p->execute(); for (int i = 0; i < size; i++) { double noise0 = noise[2 * i + 0]; double noise1 = noise[2 * i + 1]; _noise = sqrt(noise0 * noise0 + noise1 * noise1); avnoise = avm * avnoise + onem_avm * _noise; longnoise = longavm * longnoise + onem_longavm * _noise; if (!ready) ramp += rstep; if (ramp >= tdelay) ready = 1; switch (state) { case FMSQState::MUTED: if (avnoise < unmute_thresh && ready) { state = FMSQState::INCREASE; count = ntup; } outsig[2 * i + 0] = 0.0; outsig[2 * i + 1] = 0.0; break; case FMSQState::INCREASE: outsig[2 * i + 0] = (float) (insig[2 * i + 0] * cup[ntup - count]); outsig[2 * i + 1] = (float) (insig[2 * i + 1] * cup[ntup - count]); if (count-- == 0) state = FMSQState::UNMUTED; break; case FMSQState::UNMUTED: if (avnoise > tail_thresh) { state = FMSQState::TAIL; if ((lnlimit = longnoise) > 1.0) lnlimit = 1.0; count = (int)((min_tail + (max_tail - min_tail) * lnlimit) * rate); } outsig[2 * i + 0] = insig[2 * i + 0]; outsig[2 * i + 1] = insig[2 * i + 1]; break; case FMSQState::TAIL: outsig[2 * i + 0] = insig[2 * i + 0]; outsig[2 * i + 1] = insig[2 * i + 1]; if (avnoise < unmute_thresh) { state = FMSQState::UNMUTED; } else if (count-- == 0) { state = FMSQState::DECREASE; count = ntdown; } break; case FMSQState::DECREASE: outsig[2 * i + 0] = (float) (insig[2 * i + 0] * cdown[ntdown - count]); outsig[2 * i + 1] = (float) (insig[2 * i + 1] * cdown[ntdown - count]); if (count-- == 0) state = FMSQState::MUTED; break; } } } else if (insig != outsig) { std::copy(insig, insig + size * 2, outsig); } } void FMSQ::setBuffers(float* in, float* out, float* trig) { insig = in; outsig = out; trigger = trig; p->setBuffers(trigger, noise.data()); } void FMSQ::setSamplerate(int _rate) { decalc(); rate = _rate; calc(); } void FMSQ::setSize(int _size) { decalc(); size = _size; calc(); } /******************************************************************************************************** * * * RXA Properties * * * ********************************************************************************************************/ void FMSQ::setRun(int _run) { run = _run; } void FMSQ::setThreshold(double threshold) { tail_thresh = threshold; unmute_thresh = 0.9 * threshold; } void FMSQ::setNC(int _nc) { std::vector impulse; if (nc != _nc) { nc = _nc; EQP::eq_impulse (impulse, nc, 3, F.data(), G.data(), rate, 1.0 / (2.0 * size), 0, 0); p->setNc(impulse); } } void FMSQ::setMP(int _mp) { if (mp != _mp) { mp = _mp; p->setMp(mp); } } } // namespace WDSP