/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "util/simpleserializer.h" #include "dsp/dspcommands.h" #include "hackrfinput.h" #include "hackrfgui.h" #include "hackrfserializer.h" #include "hackrfthread.h" MESSAGE_CLASS_DEFINITION(HackRFInput::MsgConfigureHackRF, Message) MESSAGE_CLASS_DEFINITION(HackRFInput::MsgReportHackRF, Message) HackRFInput::Settings::Settings() : m_centerFrequency(435000*1000), m_devSampleRateIndex(0), m_LOppmTenths(0), m_lnaGain(14), m_bandwidthIndex(0), m_vgaGain(4), m_log2Decim(0), m_fcPos(FC_POS_CENTER), m_biasT(false), m_lnaExt(false) { } void HackRFInput::Settings::resetToDefaults() { m_centerFrequency = 435000*1000; m_devSampleRateIndex = 0; m_LOppmTenths = 0; m_lnaGain = 14; m_bandwidthIndex = 0; m_vgaGain = 4; m_log2Decim = 0; m_fcPos = FC_POS_CENTER; m_biasT = false; m_lnaExt = false; } QByteArray HackRFInput::Settings::serialize() const { HackRFSerializer::AirspyData data; data.m_data.m_frequency = m_centerFrequency; data.m_LOppmTenths = m_LOppmTenths; data.m_sampleRateIndex = m_devSampleRateIndex; data.m_log2Decim = m_log2Decim; data.m_fcPos = (qint32) m_fcPos; data.m_lnaGain = m_lnaGain; data.m_bandwidthIndex = m_bandwidthIndex; data.m_vgaGain = m_vgaGain; data.m_biasT = m_biasT; data.m_lnaExt = m_lnaExt; QByteArray byteArray; HackRFSerializer::writeSerializedData(data, byteArray); return byteArray; } bool HackRFInput::Settings::deserialize(const QByteArray& serializedData) { HackRFSerializer::AirspyData data; bool valid = HackRFSerializer::readSerializedData(serializedData, data); m_centerFrequency = data.m_data.m_frequency; m_LOppmTenths = data.m_LOppmTenths; m_devSampleRateIndex = data.m_sampleRateIndex; m_log2Decim = data.m_log2Decim; m_fcPos = (fcPos_t) data.m_fcPos; m_lnaGain = data.m_lnaGain; m_bandwidthIndex = data.m_bandwidthIndex; m_vgaGain = data.m_vgaGain; m_biasT = data.m_biasT; m_lnaExt = data.m_lnaExt; return valid; } HackRFInput::HackRFInput() : m_settings(), m_dev(0), m_hackRFThread(0), m_deviceDescription("HackRF") { } HackRFInput::~HackRFInput() { stop(); } bool HackRFInput::init(const Message& cmd) { return false; } bool HackRFInput::start(int device) { QMutexLocker mutexLocker(&m_mutex); hackrf_error rc; rc = (hackrf_error) hackrf_init(); if (rc != HACKRF_SUCCESS) { qCritical("HackRFInput::start: failed to initiate HackRF library %s", hackrf_error_name(rc)); } if (m_dev != 0) { stop(); } if (!m_sampleFifo.setSize(1<<19)) { qCritical("HackRFInput::start: could not allocate SampleFifo"); return false; } if ((m_dev = open_hackrf_from_sequence(device)) == 0) { qCritical("HackRFInput::start: could not open HackRF #%d", device); return false; } if((m_hackRFThread = new HackRFThread(m_dev, &m_sampleFifo)) == 0) { qFatal("HackRFInput::start: out of memory"); stop(); return false; } m_hackRFThread->startWork(); mutexLocker.unlock(); applySettings(m_settings, true); qDebug("HackRFInput::startInput: started"); return true; } void HackRFInput::stop() { qDebug("HackRFInput::stop"); QMutexLocker mutexLocker(&m_mutex); if(m_hackRFThread != 0) { m_hackRFThread->stopWork(); delete m_hackRFThread; m_hackRFThread = 0; } if(m_dev != 0) { hackrf_stop_rx(m_dev); hackrf_close(m_dev); m_dev = 0; } hackrf_exit(); } const QString& HackRFInput::getDeviceDescription() const { return m_deviceDescription; } int HackRFInput::getSampleRate() const { int rate = HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex] * 1000; return (rate / (1<(freq_hz)); if (rc != HACKRF_SUCCESS) { qWarning("HackRFInput::setCenterFrequency: could not frequency to %llu Hz", freq_hz); } else { qWarning("HackRFInput::setCenterFrequency: frequency set to %llu Hz", freq_hz); } } bool HackRFInput::applySettings(const Settings& settings, bool force) { QMutexLocker mutexLocker(&m_mutex); bool forwardChange = false; hackrf_error rc; qDebug() << "HackRFInput::applySettings"; if ((m_settings.m_devSampleRateIndex != settings.m_devSampleRateIndex) || force) { forwardChange = true; if (settings.m_devSampleRateIndex < HackRFSampleRates::m_nb_rates) { m_settings.m_devSampleRateIndex = settings.m_devSampleRateIndex; } else { m_settings.m_devSampleRateIndex = HackRFSampleRates::m_nb_rates - 1; } if (m_dev != 0) { rc = (hackrf_error) hackrf_set_sample_rate_manual(m_dev, HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex]*1000, 1); if (rc != HACKRF_SUCCESS) { qCritical("HackRFInput::applySettings: could not set sample rate index %u (%d kS/s): %s", m_settings.m_devSampleRateIndex, HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex], hackrf_error_name(rc)); } else { qDebug("HackRFInput::applySettings: sample rate set to index: %u (%d kS/s)", m_settings.m_devSampleRateIndex, HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex]); m_hackRFThread->setSamplerate(HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex]); } } } if ((m_settings.m_log2Decim != settings.m_log2Decim) || force) { m_settings.m_log2Decim = settings.m_log2Decim; forwardChange = true; if(m_dev != 0) { m_hackRFThread->setLog2Decimation(m_settings.m_log2Decim); qDebug() << "HackRFInput: set decimation to " << (1<setFcPos((int) m_settings.m_fcPos); qDebug() << "HackRFInput: set fc pos (enum) to " << (int) m_settings.m_fcPos; } } qint64 deviceCenterFrequency = m_settings.m_centerFrequency; qint64 f_img = deviceCenterFrequency; quint32 devSampleRate = HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex] * 1000; if (force || (m_settings.m_centerFrequency != settings.m_centerFrequency) || (m_settings.m_LOppmTenths != settings.m_LOppmTenths)) { m_settings.m_centerFrequency = settings.m_centerFrequency; m_settings.m_LOppmTenths = settings.m_LOppmTenths; if ((m_settings.m_log2Decim == 0) || (m_settings.m_fcPos == FC_POS_CENTER)) { deviceCenterFrequency = m_settings.m_centerFrequency; f_img = deviceCenterFrequency; } else { if (m_settings.m_fcPos == FC_POS_INFRA) { deviceCenterFrequency = m_settings.m_centerFrequency + (devSampleRate / 4); f_img = deviceCenterFrequency + devSampleRate/2; } else if (m_settings.m_fcPos == FC_POS_SUPRA) { deviceCenterFrequency = m_settings.m_centerFrequency - (devSampleRate / 4); f_img = deviceCenterFrequency - devSampleRate/2; } } if (m_dev != 0) { setCenterFrequency(deviceCenterFrequency); qDebug() << "HackRFInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz" << " device center freq: " << deviceCenterFrequency << " Hz" << " device sample rate: " << devSampleRate << "Hz" << " Actual sample rate: " << devSampleRate/(1<push(notif); } return true; } hackrf_device *HackRFInput::open_hackrf_from_sequence(int sequence) { hackrf_device_list_t *hackrf_devices = hackrf_device_list(); hackrf_device *hackrf_ptr; hackrf_error rc; rc = (hackrf_error) hackrf_device_list_open(hackrf_devices, sequence, &hackrf_ptr); if (rc == HACKRF_SUCCESS) { return hackrf_ptr; } else { return 0; } }