/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2022 Jon Beniston, M7RCE // // Copyright (C) 2011-2020 Cesium Contributors // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "coordinates.h" #include "units.h" // Scale cartesian position on to surface of ellipsoid QVector3D Coordinates::scaleToGeodeticSurface(QVector3D cartesian, QVector3D oneOverRadii, QVector3D oneOverRadiiSquared) { float centerToleranceSquared = 0.1; double x2 = cartesian.x() * cartesian.x() * oneOverRadii.x() * oneOverRadii.x(); double y2 = cartesian.y() * cartesian.y() * oneOverRadii.y() * oneOverRadii.y(); double z2 = cartesian.z() * cartesian.z() * oneOverRadii.z() * oneOverRadii.z(); double squaredNorm = x2 + y2 + z2; double ratio = sqrt(1.0 / squaredNorm); QVector3D intersection = cartesian * ratio; if (squaredNorm < centerToleranceSquared) { return intersection; } QVector3D gradient( intersection.x() * oneOverRadiiSquared.x() * 2.0, intersection.y() * oneOverRadiiSquared.y() * 2.0, intersection.z() * oneOverRadiiSquared.z() * 2.0 ); double lambda = ((1.0 - ratio) * cartesian.length()) / (0.5 * gradient.length()); double correction = 0.0; double func; double denominator; double xMultiplier; double yMultiplier; double zMultiplier; double xMultiplier2; double yMultiplier2; double zMultiplier2; double xMultiplier3; double yMultiplier3; double zMultiplier3; do { lambda -= correction; xMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.x()); yMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.y()); zMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.z()); xMultiplier2 = xMultiplier * xMultiplier; yMultiplier2 = yMultiplier * yMultiplier; zMultiplier2 = zMultiplier * zMultiplier; xMultiplier3 = xMultiplier2 * xMultiplier; yMultiplier3 = yMultiplier2 * yMultiplier; zMultiplier3 = zMultiplier2 * zMultiplier; func = x2 * xMultiplier2 + y2 * yMultiplier2 + z2 * zMultiplier2 - 1.0; denominator = x2 * xMultiplier3 * oneOverRadiiSquared.x() + y2 * yMultiplier3 * oneOverRadiiSquared.y() + z2 * zMultiplier3 * oneOverRadiiSquared.z(); double derivative = -2.0 * denominator; correction = func / derivative; } while (abs(func) > 0.000000000001); QVector3D result( cartesian.x() * xMultiplier, cartesian.y() * yMultiplier, cartesian.z() * zMultiplier ); return result; } // QVector3D.normalized doesn't work with small numbers QVector3D Coordinates::normalized(QVector3D vec) { QVector3D result; float magnitude = vec.length(); result.setX(vec.x() / magnitude); result.setY(vec.y() / magnitude); result.setZ(vec.z() / magnitude); return result; } // Convert ECEF position to geodetic coordinates void Coordinates::ecefToGeodetic(double x, double y, double z, double &latitude, double &longitude, double &height) { QVector3D wgs84OneOverRadix(1.0 / 6378137.0, 1.0 / 6378137.0, 1.0 / 6356752.3142451793); QVector3D wgs84OneOverRadiiSquared(1.0 / (6378137.0 * 6378137.0), 1.0 / (6378137.0 * 6378137.0), 1.0 / (6356752.3142451793 * 6356752.3142451793)); QVector3D cartesian(x, y, z); QVector3D p = scaleToGeodeticSurface(cartesian, wgs84OneOverRadix, wgs84OneOverRadiiSquared); QVector3D n = p * wgs84OneOverRadiiSquared; n = normalized(n); QVector3D h = cartesian - p; longitude = atan2(n.y(), n.x()); latitude = asin(n.z()); longitude = Units::radiansToDegrees(longitude); latitude = Units::radiansToDegrees(latitude); double t = QVector3D::dotProduct(h, cartesian); double sign = t >= 0.0 ? 1.0 : 0.0; height = sign * h.length(); } // Convert ECEF velocity to speed and heading void Coordinates::ecefVelToSpeedHeading(double latitude, double longitude, double velX, double velY, double velZ, double &speed, double &verticalRate, double &heading) { if ((velX == 0.0) && (velY == 0.0) && (velZ == 0.0)) { speed = 0.0; heading = 0.0; verticalRate = 0.0; return; } double latRad = Units::degreesToRadians(latitude); double lonRad = Units::degreesToRadians(longitude); double sinLat = sin(latRad); double cosLat = cos(latRad); double sinLon = sin(lonRad); double cosLon = cos(lonRad); double velEast = -velX * sinLon + velY * cosLon; double velNorth = -velX * sinLat * cosLon - velY * sinLat * sinLon + velZ * cosLat; double velUp = velX * cosLat * cosLon + velY * cosLat * sinLon + velZ * sinLat; speed = sqrt(velNorth * velNorth + velEast * velEast); verticalRate = velUp; double headingRad = atan2(velEast, velNorth); heading = Units::radiansToDegrees(headingRad); if (heading < 0.0) { heading += 360.0; } else if (heading >= 360.0) { heading -= 360.0; } } // Convert a position specified in longitude, latitude in degrees and height in metres above WGS84 ellipsoid in to // Earth Centered Earth Fixed frame cartesian coordinates // See Cesium.Cartesian3.fromDegrees QVector3D Coordinates::geodeticToECEF(double longitude, double latitude, double height) { return geodeticRadiansToECEF(Units::degreesToRadians(longitude), Units::degreesToRadians(latitude), height); } // FIXME: QVector3D is only float! // See Cesium.Cartesian3.fromRadians QVector3D Coordinates::geodeticRadiansToECEF(double longitude, double latitude, double height) { QVector3D wgs84RadiiSquared(6378137.0 * 6378137.0, 6378137.0 * 6378137.0, 6356752.3142451793 * 6356752.3142451793); double cosLatitude = cos(latitude); QVector3D n; n.setX(cosLatitude * cos(longitude)); n.setY(cosLatitude * sin(longitude)); n.setZ(sin(latitude)); n.normalize(); QVector3D k; k = wgs84RadiiSquared * n; double gamma = sqrt(QVector3D::dotProduct(n, k)); k = k / gamma; n = n * height; return k + n; } // Convert heading, pitch and roll in degrees to a quaternoin // See: Cesium.Quaternion.fromHeadingPitchRoll QQuaternion Coordinates::fromHeadingPitchRoll(double heading, double pitch, double roll) { QVector3D xAxis(1, 0, 0); QVector3D yAxis(0, 1, 0); QVector3D zAxis(0, 0, 1); QQuaternion rollQ = QQuaternion::fromAxisAndAngle(xAxis, roll); QQuaternion pitchQ = QQuaternion::fromAxisAndAngle(yAxis, -pitch); QQuaternion headingQ = QQuaternion::fromAxisAndAngle(zAxis, -heading); QQuaternion temp = rollQ * pitchQ; return headingQ * temp; } // Calculate a transformation matrix from a East, North, Up frame at the given position to Earth Centered Earth Fixed frame // See: Cesium.Transforms.eastNorthUpToFixedFrame QMatrix4x4 Coordinates::eastNorthUpToECEF(QVector3D origin) { // TODO: Handle special case at centre of earth and poles QVector3D up = origin.normalized(); QVector3D east(-origin.y(), origin.x(), 0.0); east.normalize(); QVector3D north = QVector3D::crossProduct(up, east); QMatrix4x4 result( east.x(), north.x(), up.x(), origin.x(), east.y(), north.y(), up.y(), origin.y(), east.z(), north.z(), up.z(), origin.z(), 0.0, 0.0, 0.0, 1.0 ); return result; } // Convert 3x3 rotation matrix to a quaternoin // Although there is a method for this in Qt: QQuaternion::fromRotationMatrix, it seems to // result in different signs, so the following is based on Cesium code QQuaternion Coordinates::fromRotation(QMatrix3x3 mat) { QQuaternion q; double trace = mat(0, 0) + mat(1, 1) + mat(2, 2); if (trace > 0.0) { double root = sqrt(trace + 1.0); q.setScalar(0.5 * root); root = 0.5 / root; q.setX((mat(2,1) - mat(1,2)) * root); q.setY((mat(0,2) - mat(2,0)) * root); q.setZ((mat(1,0) - mat(0,1)) * root); } else { double next[] = {1, 2, 0}; int i = 0; if (mat(1,1) > mat(0,0)) { i = 1; } if (mat(2,2) > mat(0,0) && mat(2,2) > mat(1,1)) { i = 2; } int j = next[i]; int k = next[j]; double root = sqrt(mat(i,i) - mat(j,j) - mat(k,k) + 1); double quat[] = {0.0, 0.0, 0.0}; quat[i] = 0.5 * root; root = 0.5 / root; q.setScalar((mat(j,k) - mat(k,j)) * root); quat[j] = (mat(i,j) + mat(j,i)) * root; quat[k] = (mat(i,k) + mat(k,i)) * root; q.setX(-quat[0]); q.setY(-quat[1]); q.setZ(-quat[2]); } return q; } // Calculate orientation quaternion for a model (such as an aircraft) based on position and (HPR) heading, pitch and roll (in degrees) // While Cesium supports specifying orientation as HPR, CZML doesn't currently. See https://github.com/CesiumGS/cesium/issues/5184 // CZML requires the orientation to be in the Earth Centered Earth Fixed (geocentric) reference frame (https://en.wikipedia.org/wiki/Local_tangent_plane_coordinates) // The orientation therefore depends not only on HPR but also on position // // glTF uses a right-handed axis convention; that is, the cross product of right and forward yields up. glTF defines +Y as up, +Z as forward, and -X as right. // Cesium.Quaternion.fromHeadingPitchRoll Heading is the rotation about the negative z axis. Pitch is the rotation about the negative y axis. Roll is the rotation about the positive x axis. QQuaternion Coordinates::orientation(double longitude, double latitude, double altitude, double heading, double pitch, double roll) { // Forward direction for gltf models in Cesium seems to be Eastward, rather than Northward, so we adjust heading by -90 degrees heading = -90 + heading; // Convert position to Earth Centered Earth Fixed (ECEF) frame QVector3D positionECEF = geodeticToECEF(longitude, latitude, altitude); // Calculate matrix to transform from East, North, Up (ENU) frame to ECEF frame QMatrix4x4 enuToECEFTransform = eastNorthUpToECEF(positionECEF); // Calculate rotation based on HPR in ENU frame QQuaternion hprENU = fromHeadingPitchRoll(heading, pitch, roll); // Transform rotation from ENU to ECEF QMatrix3x3 hprENU3 = hprENU.toRotationMatrix(); QMatrix4x4 hprENU4(hprENU3); QMatrix4x4 transform = enuToECEFTransform * hprENU4; // Convert from 4x4 matrix to 3x3 matrix then to a quaternion QQuaternion oq = fromRotation(transform.toGenericMatrix<3,3>()); return oq; }