/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019-2023 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include "dsp/basebandsamplesink.h" #include "dsp/datafifo.h" #include "dsp/dspcommands.h" #include "feature/feature.h" #include "util/messagequeue.h" #include "maincore.h" #include "dsddemodsink.h" DSDDemodSink::DSDDemodSink() : m_channelSampleRate(48000), m_channelFrequencyOffset(0), m_ambeFeature(nullptr), m_audioSampleRate(48000), m_interpolatorDistance(0.0f), m_interpolatorDistanceRemain(0.0f), m_sampleCount(0), m_squelchCount(0), m_squelchGate(0), m_squelchLevel(1e-4), m_squelchOpen(false), m_squelchDelayLine(24000), m_audioFifo1(48000), m_audioFifo2(48000), m_scopeXY(nullptr), m_scopeEnabled(true), m_dsdDecoder(), m_signalFormat(signalFormatNone) { m_audioBuffer.resize(1<<14); m_demodBuffer.resize(1<<12); m_demodBufferFill = 0; m_sampleBuffer = new FixReal[1<<17]; // 128 kS m_sampleBufferIndex = 0; m_scaleFromShort = SDR_RX_SAMP_SZ < sizeof(short)*8 ? 1 : 1<<(SDR_RX_SAMP_SZ - sizeof(short)*8); m_magsq = 0.0f; m_magsqSum = 0.0f; m_magsqPeak = 0.0f; m_magsqCount = 0; applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } DSDDemodSink::~DSDDemodSink() { delete[] m_sampleBuffer; } void DSDDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { Complex ci; int samplesPerSymbol = m_dsdDecoder.getSamplesPerSymbol(); m_scopeSampleBuffer.clear(); m_dsdDecoder.enableMbelib(!m_ambeFeature); // disable mbelib if DV serial support is present and activated else enable it for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { FixReal sample, delayedSample; qint16 sampleDSD; Real re = ci.real() / SDR_RX_SCALED; Real im = ci.imag() / SDR_RX_SCALED; Real magsq = re*re + im*im; m_movingAverage(magsq); m_magsqSum += magsq; if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; Real demod = m_phaseDiscri.phaseDiscriminator(ci) * m_settings.m_demodGain; // [-1.0:1.0] m_sampleCount++; // AF processing if (m_movingAverage.asDouble() > m_squelchLevel) { if (m_squelchGate > 0) { if (m_squelchCount < m_squelchGate*2) { m_squelchCount++; } m_squelchDelayLine.write(demod); m_squelchOpen = m_squelchCount > m_squelchGate; } else { m_squelchOpen = true; } } else { if (m_squelchGate > 0) { if (m_squelchCount > 0) { m_squelchCount--; } m_squelchDelayLine.write(0); m_squelchOpen = m_squelchCount > m_squelchGate; } else { m_squelchOpen = false; } } if (m_squelchOpen) { if (m_squelchGate > 0) { sampleDSD = m_squelchDelayLine.readBack(m_squelchGate) * 32768.0f; // DSD decoder takes int16 samples sample = m_squelchDelayLine.readBack(m_squelchGate) * SDR_RX_SCALEF; // scale to sample size } else { sampleDSD = demod * 32768.0f; // DSD decoder takes int16 samples sample = demod * SDR_RX_SCALEF; // scale to sample size } } else { sampleDSD = 0; sample = 0; } m_dsdDecoder.pushSample(sampleDSD); m_demodBuffer[m_demodBufferFill] = sampleDSD; ++m_demodBufferFill; if (m_demodBufferFill >= m_demodBuffer.size()) { QList dataPipes; MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes); if (dataPipes.size() > 0) { QList::iterator it = dataPipes.begin(); for (; it != dataPipes.end(); ++it) { DataFifo *fifo = qobject_cast((*it)->m_element); if (fifo) { fifo->write((quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16), DataFifo::DataTypeI16); } } } m_demodBufferFill = 0; } if (m_settings.m_enableCosineFiltering) { // show actual input to FSK demod sample = m_dsdDecoder.getFilteredSample() * m_scaleFromShort; } if (m_sampleBufferIndex < (1<<17)-1) { m_sampleBufferIndex++; } else { m_sampleBufferIndex = 0; } m_sampleBuffer[m_sampleBufferIndex] = sample; if (m_sampleBufferIndex < samplesPerSymbol) { delayedSample = m_sampleBuffer[(1<<17) - samplesPerSymbol + m_sampleBufferIndex]; // wrap } else { delayedSample = m_sampleBuffer[m_sampleBufferIndex - samplesPerSymbol]; } if (m_settings.m_syncOrConstellation) { Sample s(sample, m_dsdDecoder.getSymbolSyncSample() * m_scaleFromShort * 0.84); m_scopeSampleBuffer.push_back(s); } else { Sample s(sample, delayedSample); // I=signal, Q=signal delayed by 20 samples (2400 baud: lowest rate) m_scopeSampleBuffer.push_back(s); } if (m_ambeFeature && isNotYSFWide()) { if ((m_settings.m_slot1On) && m_dsdDecoder.mbeDVReady1()) { if (!m_settings.m_audioMute) { DSPPushMbeFrame *msg = new DSPPushMbeFrame( m_dsdDecoder.getMbeDVFrame1(), m_dsdDecoder.getMbeRateIndex(), m_settings.m_volume * 10.0, m_settings.m_tdmaStereo ? 1 : 3, // left or both channels m_settings.m_highPassFilter, m_audioSampleRate/8000, // upsample from native 8k &m_audioFifo1 ); m_ambeFeature->handleMessage(*msg); delete msg; } m_dsdDecoder.resetMbeDV1(); } if ((m_settings.m_slot2On) && m_dsdDecoder.mbeDVReady2()) { if (!m_settings.m_audioMute) { DSPPushMbeFrame *msg = new DSPPushMbeFrame( m_dsdDecoder.getMbeDVFrame2(), m_dsdDecoder.getMbeRateIndex(), m_settings.m_volume * 10.0, m_settings.m_tdmaStereo ? 2 : 3, // right or both channels m_settings.m_highPassFilter, m_audioSampleRate/8000, // upsample from native 8k &m_audioFifo2 ); m_ambeFeature->handleMessage(*msg); delete msg; } m_dsdDecoder.resetMbeDV2(); } } m_interpolatorDistanceRemain += m_interpolatorDistance; } } if (!m_ambeFeature) { if (m_settings.m_slot1On) { int nbAudioSamples; short *dsdAudio = m_dsdDecoder.getAudio1(nbAudioSamples); if (nbAudioSamples > 0) { if (!m_settings.m_audioMute) { m_audioFifo1.write((const quint8*) dsdAudio, nbAudioSamples); } m_dsdDecoder.resetAudio1(); } } if (m_settings.m_slot2On) { int nbAudioSamples; short *dsdAudio = m_dsdDecoder.getAudio2(nbAudioSamples); if (nbAudioSamples > 0) { if (!m_settings.m_audioMute) { m_audioFifo2.write((const quint8*) dsdAudio, nbAudioSamples); } m_dsdDecoder.resetAudio2(); } } } if ((m_scopeXY != nullptr) && (m_scopeEnabled)) { m_scopeXY->feed(m_scopeSampleBuffer.begin(), m_scopeSampleBuffer.end(), true); // true = real samples for what it's worth } } void DSDDemodSink::applyAudioSampleRate(int sampleRate) { if (sampleRate < 0) { qWarning("DSDDemodSink::applyAudioSampleRate: invalid sample rate: %d", sampleRate); return; } int upsampling = sampleRate / 8000; qDebug("DSDDemodSink::applyAudioSampleRate: audio rate: %d upsample by %d", sampleRate, upsampling); if (sampleRate % 8000 != 0) { qDebug("DSDDemodSink::applyAudioSampleRate: audio will sound best with sample rates that are integer multiples of 8 kS/s"); } m_dsdDecoder.setUpsampling(upsampling); m_audioSampleRate = sampleRate; QList pipes; MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes); if (pipes.size() > 0) { for (const auto& pipe : pipes) { MessageQueue *messageQueue = qobject_cast(pipe->m_element); MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate); messageQueue->push(msg); } } } void DSDDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "DSDDemodSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " inputFrequencyOffset: " << channelFrequencyOffset; if ((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((channelSampleRate != m_channelSampleRate) || force) { m_interpolator.create(16, channelSampleRate, (m_settings.m_rfBandwidth) / 2.2); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) channelSampleRate / (Real) 48000; } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void DSDDemodSink::applySettings(const DSDDemodSettings& settings, bool force) { qDebug() << "DSDDemodSink::applySettings: " << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_fmDeviation: " << settings.m_fmDeviation << " m_demodGain: " << settings.m_demodGain << " m_volume: " << settings.m_volume << " m_baudRate: " << settings.m_baudRate << " m_squelchGate" << settings.m_squelchGate << " m_squelch: " << settings.m_squelch << " m_audioMute: " << settings.m_audioMute << " m_enableCosineFiltering: " << settings.m_enableCosineFiltering << " m_syncOrConstellation: " << settings.m_syncOrConstellation << " m_slot1On: " << settings.m_slot1On << " m_slot2On: " << settings.m_slot2On << " m_tdmaStereo: " << settings.m_tdmaStereo << " m_pllLock: " << settings.m_pllLock << " m_highPassFilter: "<< settings.m_highPassFilter << " m_audioDeviceName: " << settings.m_audioDeviceName << " m_traceLengthMutliplier: " << settings.m_traceLengthMutliplier << " m_traceStroke: " << settings.m_traceStroke << " m_traceDecay: " << settings.m_traceDecay << " m_streamIndex: " << settings.m_streamIndex << " force: " << force; if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { m_interpolator.create(16, m_channelSampleRate, (settings.m_rfBandwidth) / 2.2); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_channelSampleRate / (Real) 48000; //m_phaseDiscri.setFMScaling((float) settings.m_rfBandwidth / (float) settings.m_fmDeviation); } if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) { m_phaseDiscri.setFMScaling(48000.0f / (2.0f*settings.m_fmDeviation)); } if ((settings.m_squelchGate != m_settings.m_squelchGate) || force) { m_squelchGate = 480 * settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate m_squelchCount = 0; // reset squelch open counter } if ((settings.m_squelch != m_settings.m_squelch) || force) { // input is a value in dB m_squelchLevel = std::pow(10.0, settings.m_squelch / 10.0); } if ((settings.m_volume != m_settings.m_volume) || force) { m_dsdDecoder.setAudioGain(settings.m_volume); } if ((settings.m_baudRate != m_settings.m_baudRate) || force) { m_dsdDecoder.setBaudRate(settings.m_baudRate); } if ((settings.m_enableCosineFiltering != m_settings.m_enableCosineFiltering) || force) { m_dsdDecoder.enableCosineFiltering(settings.m_enableCosineFiltering); } if ((settings.m_tdmaStereo != m_settings.m_tdmaStereo) || force) { m_dsdDecoder.setTDMAStereo(settings.m_tdmaStereo); } if ((settings.m_pllLock != m_settings.m_pllLock) || force) { m_dsdDecoder.setSymbolPLLLock(settings.m_pllLock); } if ((settings.m_highPassFilter != m_settings.m_highPassFilter) || force) { m_dsdDecoder.useHPMbelib(settings.m_highPassFilter); } m_settings = settings; } void DSDDemodSink::configureMyPosition(float myLatitude, float myLongitude) { m_dsdDecoder.setMyPoint(myLatitude, myLongitude); } const char *DSDDemodSink::updateAndGetStatusText() { formatStatusText(); return m_formatStatusText; } bool DSDDemodSink::isNotYSFWide() { if (getDecoder().getSyncType() == DSDcc::DSDDecoder::DSDSyncYSF) { return getDecoder().getYSFDecoder().getFICH().isNarrowMode(); } return true; } void DSDDemodSink::formatStatusText() { switch (getDecoder().getSyncType()) { case DSDcc::DSDDecoder::DSDSyncDMRDataMS: case DSDcc::DSDDecoder::DSDSyncDMRDataP: case DSDcc::DSDDecoder::DSDSyncDMRVoiceMS: case DSDcc::DSDDecoder::DSDSyncDMRVoiceP: if (m_signalFormat != signalFormatDMR) { strcpy(m_formatStatusText, "Sta: __ S1: __________________________ S2: __________________________"); } switch (getDecoder().getStationType()) { case DSDcc::DSDDecoder::DSDBaseStation: memcpy(&m_formatStatusText[5], "BS ", 3); break; case DSDcc::DSDDecoder::DSDMobileStation: memcpy(&m_formatStatusText[5], "MS ", 3); break; default: memcpy(&m_formatStatusText[5], "NA ", 3); break; } memcpy(&m_formatStatusText[12], getDecoder().getDMRDecoder().getSlot0Text(), 26); memcpy(&m_formatStatusText[43], getDecoder().getDMRDecoder().getSlot1Text(), 26); m_signalFormat = signalFormatDMR; break; case DSDcc::DSDDecoder::DSDSyncDStarHeaderN: case DSDcc::DSDDecoder::DSDSyncDStarHeaderP: case DSDcc::DSDDecoder::DSDSyncDStarN: case DSDcc::DSDDecoder::DSDSyncDStarP: if (m_signalFormat != signalFormatDStar) { // 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 // 0....5....0....5....0....5....0....5....0....5....0....5....0....5....0....5....0.. strcpy(m_formatStatusText, "________/____>________|________>________|____________________|______:___/_____._"); // MY UR RPT1 RPT2 Info Loc Target } { const std::string& rpt1 = getDecoder().getDStarDecoder().getRpt1(); const std::string& rpt2 = getDecoder().getDStarDecoder().getRpt2(); const std::string& mySign = getDecoder().getDStarDecoder().getMySign(); const std::string& yrSign = getDecoder().getDStarDecoder().getYourSign(); if (rpt1.length() > 0) { // 0 or 8 memcpy(&m_formatStatusText[23], rpt1.c_str(), 8); } if (rpt2.length() > 0) { // 0 or 8 memcpy(&m_formatStatusText[32], rpt2.c_str(), 8); } if (yrSign.length() > 0) { // 0 or 8 memcpy(&m_formatStatusText[14], yrSign.c_str(), 8); } if (mySign.length() > 0) { // 0 or 13 memcpy(&m_formatStatusText[0], mySign.c_str(), 13); } memcpy(&m_formatStatusText[41], getDecoder().getDStarDecoder().getInfoText(), 20); memcpy(&m_formatStatusText[62], getDecoder().getDStarDecoder().getLocator(), 6); snprintf(&m_formatStatusText[69], 82-69, "%03d/%07.1f", getDecoder().getDStarDecoder().getBearing(), getDecoder().getDStarDecoder().getDistance()); } m_formatStatusText[82] = '\0'; m_signalFormat = signalFormatDStar; break; case DSDcc::DSDDecoder::DSDSyncDPMR: snprintf(m_formatStatusText, 82, "%s CC: %04d OI: %08d CI: %08d", DSDcc::DSDdPMR::dpmrFrameTypes[(int) getDecoder().getDPMRDecoder().getFrameType()], getDecoder().getDPMRDecoder().getColorCode(), getDecoder().getDPMRDecoder().getOwnId(), getDecoder().getDPMRDecoder().getCalledId()); m_signalFormat = signalFormatDPMR; break; case DSDcc::DSDDecoder::DSDSyncNXDNP: case DSDcc::DSDDecoder::DSDSyncNXDNN: if (getDecoder().getNXDNDecoder().getRFChannel() == DSDcc::DSDNXDN::NXDNRCCH) { // 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 // 0....5....0....5....0....5....0....5....0....5....0....5....0....5....0....5....0.. // RC r cc mm llllll ssss snprintf(m_formatStatusText, 82, "RC %s %02d %02X %06X %02X", getDecoder().getNXDNDecoder().isFullRate() ? "F" : "H", getDecoder().getNXDNDecoder().getRAN(), getDecoder().getNXDNDecoder().getMessageType(), getDecoder().getNXDNDecoder().getLocationId(), getDecoder().getNXDNDecoder().getServicesFlag()); } else if ((getDecoder().getNXDNDecoder().getRFChannel() == DSDcc::DSDNXDN::NXDNRTCH) || (getDecoder().getNXDNDecoder().getRFChannel() == DSDcc::DSDNXDN::NXDNRDCH)) { if (getDecoder().getNXDNDecoder().isIdle()) { snprintf(m_formatStatusText, 82, "%s IDLE", getDecoder().getNXDNDecoder().getRFChannelStr()); } else { // 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 // 0....5....0....5....0....5....0....5....0....5....0....5....0....5....0....5....0.. // Rx r cc mm sssss>gddddd snprintf(m_formatStatusText, 82, "%s %s %02d %02X %05d>%c%05d", getDecoder().getNXDNDecoder().getRFChannelStr(), getDecoder().getNXDNDecoder().isFullRate() ? "F" : "H", getDecoder().getNXDNDecoder().getRAN(), getDecoder().getNXDNDecoder().getMessageType(), getDecoder().getNXDNDecoder().getSourceId(), getDecoder().getNXDNDecoder().isGroupCall() ? 'G' : 'I', getDecoder().getNXDNDecoder().getDestinationId()); } } else { // 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 // 0....5....0....5....0....5....0....5....0....5....0....5....0....5....0....5....0.. // RU snprintf(m_formatStatusText, 82, "RU"); } m_signalFormat = signalFormatNXDN; break; case DSDcc::DSDDecoder::DSDSyncYSF: // 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 // 0....5....0....5....0....5....0....5....0....5....0....5....0....5....0....5....0.. // C V2 RI 0:7 WL000|ssssssssss>dddddddddd |UUUUUUUUUU>DDDDDDDDDD|44444 if (getDecoder().getYSFDecoder().getFICHError() == DSDcc::DSDYSF::FICHNoError) { snprintf(m_formatStatusText, 82, "%s ", DSDcc::DSDYSF::ysfChannelTypeText[(int) getDecoder().getYSFDecoder().getFICH().getFrameInformation()]); } else { snprintf(m_formatStatusText, 82, "%d ", (int) getDecoder().getYSFDecoder().getFICHError()); } snprintf(&m_formatStatusText[2], 80, "%s %s %d:%d %c%c", DSDcc::DSDYSF::ysfDataTypeText[(int) getDecoder().getYSFDecoder().getFICH().getDataType()], DSDcc::DSDYSF::ysfCallModeText[(int) getDecoder().getYSFDecoder().getFICH().getCallMode()], getDecoder().getYSFDecoder().getFICH().getBlockTotal(), getDecoder().getYSFDecoder().getFICH().getFrameTotal(), (getDecoder().getYSFDecoder().getFICH().isNarrowMode() ? 'N' : 'W'), (getDecoder().getYSFDecoder().getFICH().isInternetPath() ? 'I' : 'L')); if (getDecoder().getYSFDecoder().getFICH().isSquelchCodeEnabled()) { snprintf(&m_formatStatusText[14], 82-14, "%03d", getDecoder().getYSFDecoder().getFICH().getSquelchCode()); } else { strncpy(&m_formatStatusText[14], "---", 82-14); } char dest[13]; if (getDecoder().getYSFDecoder().radioIdMode()) { snprintf(dest, 12, "%-5s:%-5s", getDecoder().getYSFDecoder().getDestId(), getDecoder().getYSFDecoder().getSrcId()); } else { snprintf(dest, 11, "%-10s", getDecoder().getYSFDecoder().getDest()); } snprintf(&m_formatStatusText[17], 82-17, "|%-10s>%s|%-10s>%-10s|%-5s", getDecoder().getYSFDecoder().getSrc(), dest, getDecoder().getYSFDecoder().getUplink(), getDecoder().getYSFDecoder().getDownlink(), getDecoder().getYSFDecoder().getRem4()); m_signalFormat = signalFormatYSF; break; default: m_signalFormat = signalFormatNone; m_formatStatusText[0] = '\0'; break; } m_formatStatusText[82] = '\0'; // guard }