/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, 2018 Edouard Griffiths, F4EXB // // Copyright (C) 2017 Sergey Kostanbaev, Fairwaves Inc. // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "xtrx_api.h" #include #include #include #include #include "SWGDeviceSettings.h" #include "SWGXtrxOutputSettings.h" #include "SWGDeviceState.h" #include "SWGDeviceReport.h" #include "SWGXtrxOutputReport.h" #include "device/devicesourceapi.h" #include "device/devicesinkapi.h" #include "dsp/dspcommands.h" #include "xtrxoutput.h" #include "xtrxoutputthread.h" #include "xtrx/devicextrxparam.h" #include "xtrx/devicextrxshared.h" #include "xtrx/devicextrx.h" MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgConfigureXTRX, Message) MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgGetStreamInfo, Message) MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgGetDeviceInfo, Message) MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgReportClockGenChange, Message) MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgReportStreamInfo, Message) MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgStartStop, Message) XTRXOutput::XTRXOutput(DeviceSinkAPI *deviceAPI) : m_deviceAPI(deviceAPI), m_settings(), m_XTRXOutputThread(0), m_deviceDescription("XTRXOutput"), m_running(false) { openDevice(); m_networkManager = new QNetworkAccessManager(); connect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*))); } XTRXOutput::~XTRXOutput() { disconnect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*))); delete m_networkManager; if (m_running) { stop(); } closeDevice(); } void XTRXOutput::destroy() { delete this; } bool XTRXOutput::openDevice() { m_sampleSourceFifo.resize(m_settings.m_devSampleRate/(1<<(m_settings.m_log2SoftInterp <= 4 ? m_settings.m_log2SoftInterp : 4))); // look for Tx buddies and get reference to the device object if (m_deviceAPI->getSinkBuddies().size() > 0) // then sink { qDebug("XTRXOutput::openDevice: look in Tx buddies"); DeviceSinkAPI *sinkBuddy = m_deviceAPI->getSinkBuddies()[0]; DeviceXTRXShared *deviceXTRXShared = (DeviceXTRXShared*) sinkBuddy->getBuddySharedPtr(); if (deviceXTRXShared == 0) { qCritical("XTRXOutput::openDevice: the sink buddy shared pointer is null"); return false; } DeviceXTRX *device = deviceXTRXShared->m_dev; if (device == 0) { qCritical("XTRXOutput::openDevice: cannot get device pointer from Tx buddy"); return false; } m_deviceShared.m_dev = device; } // look for Rx buddies and get reference to the device object else if (m_deviceAPI->getSourceBuddies().size() > 0) // look source sibling first { qDebug("XTRXOutput::openDevice: look in Rx buddies"); DeviceSourceAPI *sourceBuddy = m_deviceAPI->getSourceBuddies()[0]; DeviceXTRXShared *deviceXTRXShared = (DeviceXTRXShared*) sourceBuddy->getBuddySharedPtr(); if (deviceXTRXShared == 0) { qCritical("XTRXOutput::openDevice: the source buddy shared pointer is null"); return false; } DeviceXTRX *device = deviceXTRXShared->m_dev; if (device == 0) { qCritical("XTRXOutput::openDevice: cannot get device pointer from Rx buddy"); return false; } m_deviceShared.m_dev = device; } // There are no buddies then create the first BladeRF2 device else { qDebug("XTRXOutput::openDevice: open device here"); m_deviceShared.m_dev = new DeviceXTRX(); char serial[256]; strcpy(serial, qPrintable(m_deviceAPI->getSampleSinkSerial())); if (!m_deviceShared.m_dev->open(serial)) { qCritical("XTRXOutput::openDevice: cannot open BladeRF2 device"); return false; } } m_deviceShared.m_channel = m_deviceAPI->getItemIndex(); // publicly allocate channel m_deviceShared.m_sink = this; m_deviceAPI->setBuddySharedPtr(&m_deviceShared); // propagate common parameters to API return true; } void XTRXOutput::closeDevice() { if (m_deviceShared.m_dev == 0) { // was never open return; } if (m_running) { stop(); } if (m_XTRXOutputThread) { // stills own the thread => transfer to a buddy moveThreadToBuddy(); } m_deviceShared.m_channel = -1; // publicly release channel m_deviceShared.m_sink = 0; // No buddies so effectively close the device if ((m_deviceAPI->getSinkBuddies().size() == 0) && (m_deviceAPI->getSourceBuddies().size() == 0)) { m_deviceShared.m_dev->close(); delete m_deviceShared.m_dev; m_deviceShared.m_dev = 0; } } void XTRXOutput::init() { applySettings(m_settings, true, false); } XTRXOutputThread *XTRXOutput::findThread() { if (m_XTRXOutputThread == 0) // this does not own the thread { XTRXOutputThread *xtrxOutputThread = 0; // find a buddy that has allocated the thread const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator it = sinkBuddies.begin(); for (; it != sinkBuddies.end(); ++it) { XTRXOutput *buddySink = ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_sink; if (buddySink) { xtrxOutputThread = buddySink->getThread(); if (xtrxOutputThread) { break; } } } return xtrxOutputThread; } else { return m_XTRXOutputThread; // own thread } } void XTRXOutput::moveThreadToBuddy() { const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator it = sinkBuddies.begin(); for (; it != sinkBuddies.end(); ++it) { XTRXOutput *buddySink = ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_sink; if (buddySink) { buddySink->setThread(m_XTRXOutputThread); m_XTRXOutputThread = 0; // zero for others } } } bool XTRXOutput::start() { // There is a single thread per physical device (Tx side). This thread is unique and referenced by a unique // buddy in the group of sink buddies associated with this physical device. // // This start method is responsible for managing the thread when the streaming of a Tx channel is started // // It checks the following conditions // - the thread is allocated or not (by itself or one of its buddies). If it is it grabs the thread pointer. // - the requested channel is another channel (one is already streaming). // // The XTRX support library lets you work in two possible modes: // - Single Output (SO) with only one channel streaming. This can be channel 0 or 1 (channels can be swapped - unlike with BladeRF2). // - Multiple Output (MO) with two channels streaming using interleaved samples. It MUST be in this configuration if both channels are // streaming. // // It manages the transition form SO where only one channel is running to the Multiple Input (MO) if the both channels are requested. // To perform the transition it stops the thread, deletes it and creates a new one. // It marks the thread as needing start. // // If there is no thread allocated it means we are in SO mode and it creates a new one with the requested channel. // It marks the thread as needing start. // // Eventually it registers the FIFO in the thread. If the thread has to be started it enables the channels up to the number of channels // allocated in the thread and starts the thread. if (!m_deviceShared.m_dev || !m_deviceShared.m_dev->getDevice()) { qDebug("XTRXOutput::start: no device object"); return false; } int requestedChannel = m_deviceAPI->getItemIndex(); XTRXOutputThread *xtrxOutputThread = findThread(); bool needsStart = false; if (xtrxOutputThread) // if thread is already allocated { qDebug("XTRXOutput::start: thread is already allocated"); unsigned int nbOriginalChannels = xtrxOutputThread->getNbChannels(); // if one channel is already allocated it must be the other one so we'll end up with both channels // thus we expand by deleting and re-creating the thread if (nbOriginalChannels != 0) { qDebug("XTRXOutput::start: expand channels. Re-allocate thread and take ownership"); SampleSourceFifo **fifos = new SampleSourceFifo*[2]; unsigned int *log2Interps = new unsigned int[2]; for (int i = 0; i < 2; i++) // save original FIFO references and data { fifos[i] = xtrxOutputThread->getFifo(i); log2Interps[i] = xtrxOutputThread->getLog2Interpolation(i); } xtrxOutputThread->stopWork(); delete xtrxOutputThread; xtrxOutputThread = new XTRXOutputThread(m_deviceShared.m_dev->getDevice(), 2); // MO mode (2 channels) m_XTRXOutputThread = xtrxOutputThread; // take ownership m_deviceShared.m_thread = xtrxOutputThread; for (int i = 0; i < 2; i++) // restore original FIFO references { xtrxOutputThread->setFifo(i, fifos[i]); xtrxOutputThread->setLog2Interpolation(i, log2Interps[i]); } // remove old thread address from buddies (reset in all buddies). The address being held only in the owning source. const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator it = sinkBuddies.begin(); for (; it != sinkBuddies.end(); ++it) { ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0); ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_thread = 0; } // was used as temporary storage: delete[] fifos; delete[] log2Interps; needsStart = true; } else { qDebug("XTRXOutput::start: keep buddy thread"); } } else // first allocation { qDebug("XTRXOutput::start: allocate thread and take ownership"); xtrxOutputThread = new XTRXOutputThread(m_deviceShared.m_dev->getDevice(), 1, requestedChannel); m_XTRXOutputThread = xtrxOutputThread; // take ownership m_deviceShared.m_thread = xtrxOutputThread; needsStart = true; } xtrxOutputThread->setFifo(requestedChannel, &m_sampleSourceFifo); xtrxOutputThread->setLog2Interpolation(requestedChannel, m_settings.m_log2SoftInterp); if (needsStart) { qDebug("XTRXOutput::start: (re)start thread"); xtrxOutputThread->startWork(); } applySettings(m_settings, true); qDebug("XTRXOutput::start: started"); m_running = true; return true; } void XTRXOutput::stop() { // This stop method is responsible for managing the thread when the streaming of a Rx channel is stopped // // If the thread is currently managing only one channel (SO mode). The thread can be just stopped and deleted. // Then the channel is closed. // // If the thread is currently managing both channels (MO mode) then we are removing one channel. Thus we must // transition from MO to SO. This transition is handled by stopping the thread, deleting it and creating a new one // managing a single channel. if (!m_running) { return; } int removedChannel = m_deviceAPI->getItemIndex(); // channel to remove int requestedChannel = removedChannel ^ 1; // channel to keep (opposite channel) XTRXOutputThread *xtrxOutputThread = findThread(); if (xtrxOutputThread == 0) { // no thread allocated return; } int nbOriginalChannels = xtrxOutputThread->getNbChannels(); if (nbOriginalChannels == 1) // SO mode => just stop and delete the thread { qDebug("XTRXOutput::stop: SO mode. Just stop and delete the thread"); xtrxOutputThread->stopWork(); delete xtrxOutputThread; m_XTRXOutputThread = 0; m_deviceShared.m_thread = 0; // remove old thread address from buddies (reset in all buddies) const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator it = sinkBuddies.begin(); for (; it != sinkBuddies.end(); ++it) { ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0); ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_thread = 0; } } else if (nbOriginalChannels == 2) // Reduce from MO to SO by deleting and re-creating the thread { qDebug("XTRXOutput::stop: MO mode. Reduce by deleting and re-creating the thread"); xtrxOutputThread->stopWork(); delete xtrxOutputThread; xtrxOutputThread = new XTRXOutputThread(m_deviceShared.m_dev->getDevice(), 1, requestedChannel); m_XTRXOutputThread = xtrxOutputThread; // take ownership m_deviceShared.m_thread = xtrxOutputThread; xtrxOutputThread->setFifo(requestedChannel, &m_sampleSourceFifo); xtrxOutputThread->setLog2Interpolation(requestedChannel, m_settings.m_log2SoftInterp); // remove old thread address from buddies (reset in all buddies). The address being held only in the owning source. const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator it = sinkBuddies.begin(); for (; it != sinkBuddies.end(); ++it) { ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0); ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_thread = 0; } xtrxOutputThread->startWork(); applySettings(m_settings, true); } m_running = false; } void XTRXOutput::suspendRxThread() { const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator itSource = sourceBuddies.begin(); qDebug("XTRXOutput::suspendRxThread (%lu)", sourceBuddies.size()); for (; itSource != sourceBuddies.end(); ++itSource) { DeviceXTRXShared *buddySharedPtr = (DeviceXTRXShared *) (*itSource)->getBuddySharedPtr(); if (buddySharedPtr->m_thread && buddySharedPtr->m_thread->isRunning()) { buddySharedPtr->m_thread->stopWork(); buddySharedPtr->m_threadWasRunning = true; } else { buddySharedPtr->m_threadWasRunning = false; } } } void XTRXOutput::resumeRxThread() { const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator itSource = sourceBuddies.begin(); qDebug("XTRXOutput::resumeRxThread (%lu)", sourceBuddies.size()); for (; itSource != sourceBuddies.end(); ++itSource) { DeviceXTRXShared *buddySharedPtr = (DeviceXTRXShared *) (*itSource)->getBuddySharedPtr(); if (buddySharedPtr->m_threadWasRunning) { buddySharedPtr->m_thread->startWork(); } } } QByteArray XTRXOutput::serialize() const { return m_settings.serialize(); } bool XTRXOutput::deserialize(const QByteArray& data) { bool success = true; if (!m_settings.deserialize(data)) { m_settings.resetToDefaults(); success = false; } MsgConfigureXTRX* message = MsgConfigureXTRX::create(m_settings, true); m_inputMessageQueue.push(message); if (m_guiMessageQueue) { MsgConfigureXTRX* messageToGUI = MsgConfigureXTRX::create(m_settings, true); m_guiMessageQueue->push(messageToGUI); } return success; } const QString& XTRXOutput::getDeviceDescription() const { return m_deviceDescription; } int XTRXOutput::getSampleRate() const { double rate = m_settings.m_devSampleRate; if (m_deviceShared.m_dev) { rate = m_deviceShared.m_dev->getActualOutputRate(); } return (int)((rate / (1<getActualOutputRate(); } return devSampleRate; } uint32_t XTRXOutput::getLog2HardInterp() const { uint32_t log2HardInterp = m_settings.m_log2HardInterp; if (m_deviceShared.m_dev && (m_deviceShared.m_dev->getActualOutputRate() != 0.0)) { log2HardInterp = log2(m_deviceShared.m_dev->getClockGen() / m_deviceShared.m_dev->getActualOutputRate() / 4); } return log2HardInterp; } double XTRXOutput::getClockGen() const { if (m_deviceShared.m_dev) { return m_deviceShared.m_dev->getClockGen(); } else { return 0.0; } } quint64 XTRXOutput::getCenterFrequency() const { return m_settings.m_centerFrequency + (m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0); } void XTRXOutput::setCenterFrequency(qint64 centerFrequency) { XTRXOutputSettings settings = m_settings; settings.m_centerFrequency = centerFrequency - (m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0); MsgConfigureXTRX* message = MsgConfigureXTRX::create(settings, false); m_inputMessageQueue.push(message); if (m_guiMessageQueue) { MsgConfigureXTRX* messageToGUI = MsgConfigureXTRX::create(settings, false); m_guiMessageQueue->push(messageToGUI); } } std::size_t XTRXOutput::getChannelIndex() { return m_deviceShared.m_channel; } void XTRXOutput::getLORange(float& minF, float& maxF, float& stepF) const { minF = 29e6; maxF = 3840e6; stepF = 10; qDebug("XTRXOutput::getLORange: min: %f max: %f step: %f", minF, maxF, stepF); } void XTRXOutput::getSRRange(float& minF, float& maxF, float& stepF) const { minF = 100e3; maxF = 120e6; stepF = 10; qDebug("XTRXOutput::getSRRange: min: %f max: %f step: %f", minF, maxF, stepF); } void XTRXOutput::getLPRange(float& minF, float& maxF, float& stepF) const { minF = 500e3; maxF = 130e6; stepF = 10; qDebug("XTRXOutput::getLPRange: min: %f max: %f step: %f", minF, maxF, stepF); } bool XTRXOutput::handleMessage(const Message& message) { if (MsgConfigureXTRX::match(message)) { MsgConfigureXTRX& conf = (MsgConfigureXTRX&) message; qDebug() << "XTRXOutput::handleMessage: MsgConfigureXTRX"; if (!applySettings(conf.getSettings(), conf.getForce())) { qDebug("XTRXOutput::handleMessage config error"); } return true; } else if (DeviceXTRXShared::MsgReportBuddyChange::match(message)) { DeviceXTRXShared::MsgReportBuddyChange& report = (DeviceXTRXShared::MsgReportBuddyChange&) message; if (!report.getRxElseTx()) { m_settings.m_devSampleRate = report.getDevSampleRate(); m_settings.m_log2HardInterp = report.getLog2HardDecimInterp(); m_settings.m_centerFrequency = report.getCenterFrequency(); } else { m_settings.m_devSampleRate = m_deviceShared.m_dev->getActualOutputRate(); m_settings.m_log2HardInterp = getLog2HardInterp(); qDebug() << "XTRXOutput::handleMessage: MsgReportBuddyChange:" << " host_Hz: " << m_deviceShared.m_dev->getActualOutputRate() << " dac_Hz: " << m_deviceShared.m_dev->getClockGen() / 4 << " m_log2HardInterp: " << m_settings.m_log2HardInterp; } if (m_settings.m_ncoEnable) // need to reset NCO after sample rate change { applySettings(m_settings, false, true); } int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0; DSPSignalNotification *notif = new DSPSignalNotification( m_settings.m_devSampleRate/(1<getDeviceEngineInputMessageQueue()->push(notif); if (getMessageQueueToGUI()) { DeviceXTRXShared::MsgReportBuddyChange *reportToGUI = DeviceXTRXShared::MsgReportBuddyChange::create( m_settings.m_devSampleRate, m_settings.m_log2HardInterp, m_settings.m_centerFrequency, true); getMessageQueueToGUI()->push(reportToGUI); } return true; } else if (DeviceXTRXShared::MsgReportClockSourceChange::match(message)) { DeviceXTRXShared::MsgReportClockSourceChange& report = (DeviceXTRXShared::MsgReportClockSourceChange&) message; m_settings.m_extClock = report.getExtClock(); m_settings.m_extClockFreq = report.getExtClockFeq(); if (getMessageQueueToGUI()) { DeviceXTRXShared::MsgReportClockSourceChange *reportToGUI = DeviceXTRXShared::MsgReportClockSourceChange::create( m_settings.m_extClock, m_settings.m_extClockFreq); getMessageQueueToGUI()->push(reportToGUI); } return true; } else if (MsgGetStreamInfo::match(message)) { if (m_deviceAPI->getSampleSinkGUIMessageQueue()) { uint64_t fifolevel = 0; if (m_deviceShared.m_dev && m_deviceShared.m_dev->getDevice()) { xtrx_val_get(m_deviceShared.m_dev->getDevice(), XTRX_TX, XTRX_CH_AB, XTRX_PERF_LLFIFO, &fifolevel); } MsgReportStreamInfo *report = MsgReportStreamInfo::create( true, true, fifolevel, 65536); if (m_deviceAPI->getSampleSinkGUIMessageQueue()) { m_deviceAPI->getSampleSinkGUIMessageQueue()->push(report); } } return true; } else if (MsgGetDeviceInfo::match(message)) { double board_temp = 0.0; bool gps_locked = false; if (!m_deviceShared.m_dev->getDevice() || ((board_temp = m_deviceShared.get_board_temperature() / 256.0) == 0.0)) { qDebug("XTRXOutput::handleMessage: MsgGetDeviceInfo: cannot get board temperature"); } if (!m_deviceShared.m_dev->getDevice()) { qDebug("XTRXOutput::handleMessage: MsgGetDeviceInfo: cannot get GPS lock status"); } else { gps_locked = m_deviceShared.get_gps_status(); } // send to oneself if (m_deviceAPI->getSampleSinkGUIMessageQueue()) { DeviceXTRXShared::MsgReportDeviceInfo *report = DeviceXTRXShared::MsgReportDeviceInfo::create(board_temp, gps_locked); m_deviceAPI->getSampleSinkGUIMessageQueue()->push(report); } // send to sink buddies const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator itSink = sinkBuddies.begin(); for (; itSink != sinkBuddies.end(); ++itSink) { if ((*itSink)->getSampleSinkGUIMessageQueue()) { DeviceXTRXShared::MsgReportDeviceInfo *report = DeviceXTRXShared::MsgReportDeviceInfo::create(board_temp, gps_locked); (*itSink)->getSampleSinkGUIMessageQueue()->push(report); } } // send to source buddies const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator itSource = sourceBuddies.begin(); for (; itSource != sourceBuddies.end(); ++itSource) { if ((*itSource)->getSampleSourceGUIMessageQueue()) { DeviceXTRXShared::MsgReportDeviceInfo *report = DeviceXTRXShared::MsgReportDeviceInfo::create(board_temp, gps_locked); (*itSource)->getSampleSourceGUIMessageQueue()->push(report); } } return true; } else if (MsgStartStop::match(message)) { MsgStartStop& cmd = (MsgStartStop&) message; qDebug() << "XTRXOutput::handleMessage: MsgStartStop: " << (cmd.getStartStop() ? "start" : "stop"); if (cmd.getStartStop()) { if (m_deviceAPI->initGeneration()) { m_deviceAPI->startGeneration(); } } else { m_deviceAPI->stopGeneration(); } return true; } else { return false; } } bool XTRXOutput::applySettings(const XTRXOutputSettings& settings, bool force, bool forceNCOFrequency) { int requestedChannel = m_deviceAPI->getItemIndex(); XTRXOutputThread *outputThread = findThread(); QList reverseAPIKeys; bool forwardChangeOwnDSP = false; bool forwardChangeTxDSP = false; bool forwardChangeAllDSP = false; bool forwardClockSource = false; bool txThreadWasRunning = false; bool doLPCalibration = false; bool doChangeSampleRate = false; bool doChangeFreq = false; // apply settings qDebug() << "XTRXOutput::applySettings: m_centerFrequency: " << m_settings.m_centerFrequency << " m_devSampleRate: " << m_settings.m_devSampleRate << " m_log2SoftInterp: " << m_settings.m_log2SoftInterp << " m_gain: " << m_settings.m_gain << " m_lpfBW: " << m_settings.m_lpfBW << " m_pwrmode: " << m_settings.m_pwrmode << " m_ncoEnable: " << m_settings.m_ncoEnable << " m_ncoFrequency: " << m_settings.m_ncoFrequency << " m_antennaPath: " << m_settings.m_antennaPath << " m_extClock: " << m_settings.m_extClock << " m_extClockFreq: " << m_settings.m_extClockFreq << " force: " << force; if ((m_settings.m_pwrmode != settings.m_pwrmode)) { reverseAPIKeys.append("pwrmode"); if (m_deviceShared.m_dev->getDevice() != 0) { if (xtrx_val_set(m_deviceShared.m_dev->getDevice(), XTRX_TRX, m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B, XTRX_LMS7_PWR_MODE, settings.m_pwrmode) < 0) { qCritical("XTRXOutput::applySettings: could not set power mode %d", settings.m_pwrmode); } } } if ((m_settings.m_extClock != settings.m_extClock) || force) { reverseAPIKeys.append("extClock"); } if ((m_settings.m_extClockFreq != settings.m_extClockFreq) || force) { reverseAPIKeys.append("extClockFreq"); } if ((m_settings.m_extClock != settings.m_extClock) || (settings.m_extClock && (m_settings.m_extClockFreq != settings.m_extClockFreq)) || force) { if (m_deviceShared.m_dev->getDevice() != 0) { xtrx_set_ref_clk(m_deviceShared.m_dev->getDevice(), (settings.m_extClock) ? settings.m_extClockFreq : 0, (settings.m_extClock) ? XTRX_CLKSRC_EXT : XTRX_CLKSRC_INT); { forwardClockSource = true; doChangeSampleRate = true; doChangeFreq = true; qDebug("XTRXOutput::applySettings: clock set to %s (Ext: %d Hz)", settings.m_extClock ? "external" : "internal", settings.m_extClockFreq); } } } if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force) { reverseAPIKeys.append("devSampleRate"); } if ((m_settings.m_log2HardInterp != settings.m_log2HardInterp) || force) { reverseAPIKeys.append("log2HardInterp"); } if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || (m_settings.m_log2HardInterp != settings.m_log2HardInterp) || force) { forwardChangeAllDSP = true; //m_settings.m_devSampleRate != settings.m_devSampleRate; if (m_deviceShared.m_dev->getDevice() != 0) { doChangeSampleRate = true; } } if ((m_settings.m_gain != settings.m_gain) || force) { reverseAPIKeys.append("gain"); if (m_deviceShared.m_dev->getDevice() != 0) { if (xtrx_set_gain(m_deviceShared.m_dev->getDevice(), m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B, XTRX_TX_PAD_GAIN, settings.m_gain, 0) < 0) { qDebug("XTRXOutput::applySettings: xtrx_set_gain(PAD) failed"); } else { qDebug() << "XTRXOutput::applySettings: Gain (PAD) set to " << settings.m_gain; } } } if ((m_settings.m_lpfBW != settings.m_lpfBW) || force) { reverseAPIKeys.append("lpfBW"); if (m_deviceShared.m_dev->getDevice() != 0) { doLPCalibration = true; } } #if 0 if ((m_settings.m_lpfFIRBW != settings.m_lpfFIRBW) || (m_settings.m_lpfFIREnable != settings.m_lpfFIREnable) || force) { if (m_deviceShared.m_deviceParams->getDevice() != 0 && m_channelAcquired) { if (LMS_SetGFIRLPF(m_deviceShared.m_deviceParams->getDevice(), LMS_CH_RX, m_deviceShared.m_channel, settings.m_lpfFIREnable, settings.m_lpfFIRBW) < 0) { qCritical("XTRXOutput::applySettings: could %s and set LPF FIR to %f Hz", settings.m_lpfFIREnable ? "enable" : "disable", settings.m_lpfFIRBW); } else { //doCalibration = true; qDebug("XTRXOutput::applySettings: %sd and set LPF FIR to %f Hz", settings.m_lpfFIREnable ? "enable" : "disable", settings.m_lpfFIRBW); } } } #endif if ((m_settings.m_log2SoftInterp != settings.m_log2SoftInterp) || force) { reverseAPIKeys.append("log2SoftInterp"); forwardChangeOwnDSP = true; if (outputThread != 0) { outputThread->setLog2Interpolation(requestedChannel, settings.m_log2SoftInterp); qDebug() << "XTRXOutput::applySettings: set soft interpolation to " << (1<getDevice() != 0) { if (xtrx_set_antenna(m_deviceShared.m_dev->getDevice(), settings.m_antennaPath) < 0) { qCritical("XTRXOutput::applySettings: could not set antenna path to %d", (int) settings.m_antennaPath); } else { qDebug("XTRXOutput::applySettings: set antenna path to %d", (int) settings.m_antennaPath); } } } if ((m_settings.m_centerFrequency != settings.m_centerFrequency) || force) { reverseAPIKeys.append("centerFrequency"); doChangeFreq = true; } if ((m_settings.m_ncoFrequency != settings.m_ncoFrequency) || force) { reverseAPIKeys.append("ncoFrequency"); } if ((m_settings.m_ncoEnable != settings.m_ncoEnable) || force) { reverseAPIKeys.append("ncoEnable"); } if ((m_settings.m_ncoFrequency != settings.m_ncoFrequency) || (m_settings.m_ncoEnable != settings.m_ncoEnable) || force) { forceNCOFrequency = true; } if (settings.m_useReverseAPI) { bool fullUpdate = ((m_settings.m_useReverseAPI != settings.m_useReverseAPI) && settings.m_useReverseAPI) || (m_settings.m_reverseAPIAddress != settings.m_reverseAPIAddress) || (m_settings.m_reverseAPIPort != settings.m_reverseAPIPort) || (m_settings.m_reverseAPIDeviceIndex != settings.m_reverseAPIDeviceIndex); webapiReverseSendSettings(reverseAPIKeys, settings, fullUpdate || force); } m_settings = settings; if (doChangeSampleRate) { XTRXOutputThread *txThread = findThread(); if (txThread && txThread->isRunning()) { txThread->stopWork(); txThreadWasRunning = true; } suspendRxThread(); double master = (settings.m_log2HardInterp == 0) ? 0 : (settings.m_devSampleRate * 4 * (1 << settings.m_log2HardInterp)); if (m_deviceShared.m_dev->set_samplerate(settings.m_devSampleRate, master, //(settings.m_devSampleRate<getActualOutputRate(), 1 << getLog2HardInterp()); } resumeRxThread(); if (txThreadWasRunning) { txThread->startWork(); } } if (doLPCalibration) { if (xtrx_tune_tx_bandwidth(m_deviceShared.m_dev->getDevice(), m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B, m_settings.m_lpfBW, 0) < 0) { qCritical("XTRXOutput::applySettings: could not set LPF to %f Hz", m_settings.m_lpfBW); } else { qDebug("XTRXOutput::applySettings: LPF set to %f Hz", m_settings.m_lpfBW); } } if (doChangeFreq) { forwardChangeTxDSP = true; if (m_deviceShared.m_dev->getDevice() != 0) { if (xtrx_tune(m_deviceShared.m_dev->getDevice(), XTRX_TUNE_TX_FDD, settings.m_centerFrequency, 0) < 0) { qCritical("XTRXOutput::applySettings: could not set frequency to %lu", settings.m_centerFrequency); } else { //doCalibration = true; qDebug("XTRXOutput::applySettings: frequency set to %lu", settings.m_centerFrequency); } } } if (forceNCOFrequency) { if (m_deviceShared.m_dev->getDevice() != 0) { if (xtrx_tune_ex(m_deviceShared.m_dev->getDevice(), XTRX_TUNE_BB_TX, m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B, (settings.m_ncoEnable) ? settings.m_ncoFrequency : 0, NULL) < 0) { qCritical("XTRXOutput::applySettings: could not %s and set NCO to %d Hz", settings.m_ncoEnable ? "enable" : "disable", settings.m_ncoFrequency); } else { forwardChangeOwnDSP = true; qDebug("XTRXOutput::applySettings: %sd and set NCO to %d Hz", settings.m_ncoEnable ? "enable" : "disable", settings.m_ncoFrequency); } } } // forward changes to buddies or oneself if (forwardChangeAllDSP) { qDebug("XTRXOutput::applySettings: forward change to all buddies"); int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0; // send to self first DSPSignalNotification *notif = new DSPSignalNotification(getSampleRate(), m_settings.m_centerFrequency + ncoShift); m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif); if (getMessageQueueToGUI()) { MsgReportClockGenChange *report = MsgReportClockGenChange::create(); getMessageQueueToGUI()->push(report); } // send to source buddies const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator itSource = sourceBuddies.begin(); for (; itSource != sourceBuddies.end(); ++itSource) { DeviceXTRXShared::MsgReportBuddyChange *report = DeviceXTRXShared::MsgReportBuddyChange::create( getDevSampleRate(), getLog2HardInterp(), m_settings.m_centerFrequency, true); (*itSource)->getSampleSourceInputMessageQueue()->push(report); } // send to sink buddies const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator itSink = sinkBuddies.begin(); for (; itSink != sinkBuddies.end(); ++itSink) { DeviceXTRXShared::MsgReportBuddyChange *report = DeviceXTRXShared::MsgReportBuddyChange::create( getDevSampleRate(), getLog2HardInterp(), m_settings.m_centerFrequency, true); (*itSink)->getSampleSinkInputMessageQueue()->push(report); } } else if (forwardChangeTxDSP) { qDebug("XTRXOutput::applySettings: forward change to Tx buddies"); int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0; // send to self first DSPSignalNotification *notif = new DSPSignalNotification(getSampleRate(), m_settings.m_centerFrequency + ncoShift); m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif); if (getMessageQueueToGUI()) { MsgReportClockGenChange *report = MsgReportClockGenChange::create(); getMessageQueueToGUI()->push(report); } // send to sink buddies const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator itSink = sinkBuddies.begin(); for (; itSink != sinkBuddies.end(); ++itSink) { DeviceXTRXShared::MsgReportBuddyChange *report = DeviceXTRXShared::MsgReportBuddyChange::create( getDevSampleRate(), getLog2HardInterp(), m_settings.m_centerFrequency, true); (*itSink)->getSampleSinkInputMessageQueue()->push(report); } } else if (forwardChangeOwnDSP) { qDebug("XTRXOutput::applySettings: forward change to self only"); int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0; DSPSignalNotification *notif = new DSPSignalNotification(getSampleRate(), m_settings.m_centerFrequency + ncoShift); m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif); if (getMessageQueueToGUI()) { MsgReportClockGenChange *report = MsgReportClockGenChange::create(); getMessageQueueToGUI()->push(report); } } if (forwardClockSource) { // send to source buddies const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator itSource = sourceBuddies.begin(); for (; itSource != sourceBuddies.end(); ++itSource) { DeviceXTRXShared::MsgReportClockSourceChange *report = DeviceXTRXShared::MsgReportClockSourceChange::create( m_settings.m_extClock, m_settings.m_extClockFreq); (*itSource)->getSampleSourceInputMessageQueue()->push(report); } // send to sink buddies const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator itSink = sinkBuddies.begin(); for (; itSink != sinkBuddies.end(); ++itSink) { DeviceXTRXShared::MsgReportClockSourceChange *report = DeviceXTRXShared::MsgReportClockSourceChange::create( m_settings.m_extClock, m_settings.m_extClockFreq); (*itSink)->getSampleSinkInputMessageQueue()->push(report); } } qDebug() << "XTRXOutput::applySettings:" << " device stream sample rate: " << getDevSampleRate() << "S/s" << " sample rate with soft interpolation: " << getSampleRate() << "S/s" << " forceNCOFrequency: " << forceNCOFrequency << " doLPCalibration: " << doLPCalibration << " doChangeFreq: " << doChangeFreq << " doChangeSampleRate: " << doChangeSampleRate; return true; } int XTRXOutput::webapiSettingsGet( SWGSDRangel::SWGDeviceSettings& response, QString& errorMessage) { (void) errorMessage; response.setXtrxOutputSettings(new SWGSDRangel::SWGXtrxOutputSettings()); response.getXtrxOutputSettings()->init(); webapiFormatDeviceSettings(response, m_settings); return 200; } int XTRXOutput::webapiSettingsPutPatch( bool force, const QStringList& deviceSettingsKeys, SWGSDRangel::SWGDeviceSettings& response, // query + response QString& errorMessage) { (void) errorMessage; XTRXOutputSettings settings = m_settings; if (deviceSettingsKeys.contains("centerFrequency")) { settings.m_centerFrequency = response.getXtrxOutputSettings()->getCenterFrequency(); } if (deviceSettingsKeys.contains("devSampleRate")) { settings.m_devSampleRate = response.getXtrxOutputSettings()->getDevSampleRate(); } if (deviceSettingsKeys.contains("log2HardInterp")) { settings.m_log2HardInterp = response.getXtrxOutputSettings()->getLog2HardInterp(); } if (deviceSettingsKeys.contains("log2SoftInterp")) { settings.m_log2SoftInterp = response.getXtrxOutputSettings()->getLog2SoftInterp(); } if (deviceSettingsKeys.contains("lpfBW")) { settings.m_lpfBW = response.getXtrxOutputSettings()->getLpfBw(); } if (deviceSettingsKeys.contains("gain")) { settings.m_gain = response.getXtrxOutputSettings()->getGain(); } if (deviceSettingsKeys.contains("ncoEnable")) { settings.m_ncoEnable = response.getXtrxOutputSettings()->getNcoEnable() != 0; } if (deviceSettingsKeys.contains("ncoFrequency")) { settings.m_ncoFrequency = response.getXtrxOutputSettings()->getNcoFrequency(); } if (deviceSettingsKeys.contains("antennaPath")) { settings.m_antennaPath = (xtrx_antenna_t) response.getXtrxOutputSettings()->getAntennaPath(); } if (deviceSettingsKeys.contains("extClock")) { settings.m_extClock = response.getXtrxOutputSettings()->getExtClock() != 0; } if (deviceSettingsKeys.contains("extClockFreq")) { settings.m_extClockFreq = response.getXtrxOutputSettings()->getExtClockFreq(); } if (deviceSettingsKeys.contains("pwrmode")) { settings.m_pwrmode = response.getXtrxOutputSettings()->getPwrmode(); } if (deviceSettingsKeys.contains("useReverseAPI")) { settings.m_useReverseAPI = response.getXtrxOutputSettings()->getUseReverseApi() != 0; } if (deviceSettingsKeys.contains("reverseAPIAddress")) { settings.m_reverseAPIAddress = *response.getXtrxOutputSettings()->getReverseApiAddress(); } if (deviceSettingsKeys.contains("reverseAPIPort")) { settings.m_reverseAPIPort = response.getXtrxOutputSettings()->getReverseApiPort(); } if (deviceSettingsKeys.contains("reverseAPIDeviceIndex")) { settings.m_reverseAPIDeviceIndex = response.getXtrxOutputSettings()->getReverseApiDeviceIndex(); } MsgConfigureXTRX *msg = MsgConfigureXTRX::create(settings, force); m_inputMessageQueue.push(msg); if (m_guiMessageQueue) // forward to GUI if any { MsgConfigureXTRX *msgToGUI = MsgConfigureXTRX::create(settings, force); m_guiMessageQueue->push(msgToGUI); } webapiFormatDeviceSettings(response, settings); return 200; } void XTRXOutput::webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response, const XTRXOutputSettings& settings) { response.getXtrxOutputSettings()->setCenterFrequency(settings.m_centerFrequency); response.getXtrxOutputSettings()->setDevSampleRate(settings.m_devSampleRate); response.getXtrxOutputSettings()->setLog2HardInterp(settings.m_log2HardInterp); response.getXtrxOutputSettings()->setLog2SoftInterp(settings.m_log2SoftInterp); response.getXtrxOutputSettings()->setLpfBw(settings.m_lpfBW); response.getXtrxOutputSettings()->setGain(settings.m_gain); response.getXtrxOutputSettings()->setNcoEnable(settings.m_ncoEnable ? 1 : 0); response.getXtrxOutputSettings()->setNcoFrequency(settings.m_ncoFrequency); response.getXtrxOutputSettings()->setAntennaPath((int) settings.m_antennaPath); response.getXtrxOutputSettings()->setExtClock(settings.m_extClock ? 1 : 0); response.getXtrxOutputSettings()->setExtClockFreq(settings.m_extClockFreq); response.getXtrxOutputSettings()->setPwrmode(settings.m_pwrmode); response.getXtrxOutputSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0); if (response.getXtrxOutputSettings()->getReverseApiAddress()) { *response.getXtrxOutputSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress; } else { response.getXtrxOutputSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress)); } response.getXtrxOutputSettings()->setReverseApiPort(settings.m_reverseAPIPort); response.getXtrxOutputSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex); } int XTRXOutput::webapiReportGet( SWGSDRangel::SWGDeviceReport& response, QString& errorMessage) { (void) errorMessage; response.setXtrxOutputReport(new SWGSDRangel::SWGXtrxOutputReport()); response.getXtrxOutputReport()->init(); webapiFormatDeviceReport(response); return 200; } int XTRXOutput::webapiRunGet( SWGSDRangel::SWGDeviceState& response, QString& errorMessage) { (void) errorMessage; m_deviceAPI->getDeviceEngineStateStr(*response.getState()); return 200; } int XTRXOutput::webapiRun( bool run, SWGSDRangel::SWGDeviceState& response, QString& errorMessage) { (void) errorMessage; m_deviceAPI->getDeviceEngineStateStr(*response.getState()); MsgStartStop *message = MsgStartStop::create(run); m_inputMessageQueue.push(message); if (m_guiMessageQueue) // forward to GUI if any { MsgStartStop *msgToGUI = MsgStartStop::create(run); m_guiMessageQueue->push(msgToGUI); } return 200; } void XTRXOutput::webapiFormatDeviceReport(SWGSDRangel::SWGDeviceReport& response) { int ret; bool success = false; double temp = 0.0; bool gpsStatus = false; uint64_t fifolevel = 0; uint32_t fifosize = 1<<16; if (m_deviceShared.m_dev && m_deviceShared.m_dev->getDevice()) { ret = xtrx_val_get(m_deviceShared.m_dev->getDevice(), XTRX_TX, XTRX_CH_AB, XTRX_PERF_LLFIFO, &fifolevel); success = (ret >= 0); temp = m_deviceShared.get_board_temperature() / 256.0; gpsStatus = m_deviceShared.get_gps_status(); } response.getXtrxOutputReport()->setSuccess(success ? 1 : 0); response.getXtrxOutputReport()->setFifoSize(fifosize); response.getXtrxOutputReport()->setFifoFill(fifolevel); response.getXtrxOutputReport()->setTemperature(temp); response.getXtrxOutputReport()->setGpsLock(gpsStatus ? 1 : 0); } void XTRXOutput::webapiReverseSendSettings(QList& deviceSettingsKeys, const XTRXOutputSettings& settings, bool force) { SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings(); swgDeviceSettings->setTx(1); swgDeviceSettings->setDeviceHwType(new QString("XTRX")); swgDeviceSettings->setXtrxOutputSettings(new SWGSDRangel::SWGXtrxOutputSettings()); SWGSDRangel::SWGXtrxOutputSettings *swgXtrxOutputSettings = swgDeviceSettings->getXtrxOutputSettings(); // transfer data that has been modified. When force is on transfer all data except reverse API data if (deviceSettingsKeys.contains("centerFrequency") || force) { swgXtrxOutputSettings->setCenterFrequency(settings.m_centerFrequency); } if (deviceSettingsKeys.contains("devSampleRate") || force) { swgXtrxOutputSettings->setDevSampleRate(settings.m_devSampleRate); } if (deviceSettingsKeys.contains("log2HardInterp") || force) { swgXtrxOutputSettings->setLog2HardInterp(settings.m_log2HardInterp); } if (deviceSettingsKeys.contains("log2SoftInterp") || force) { swgXtrxOutputSettings->setLog2SoftInterp(settings.m_log2SoftInterp); } if (deviceSettingsKeys.contains("ncoEnable") || force) { swgXtrxOutputSettings->setNcoEnable(settings.m_ncoEnable ? 1 : 0); } if (deviceSettingsKeys.contains("ncoFrequency") || force) { swgXtrxOutputSettings->setNcoFrequency(settings.m_ncoFrequency); } if (deviceSettingsKeys.contains("lpfBW") || force) { swgXtrxOutputSettings->setLpfBw(settings.m_lpfBW); } if (deviceSettingsKeys.contains("antennaPath") || force) { swgXtrxOutputSettings->setAntennaPath((int) settings.m_antennaPath); } if (deviceSettingsKeys.contains("gain") || force) { swgXtrxOutputSettings->setGain(settings.m_gain); } if (deviceSettingsKeys.contains("extClock") || force) { swgXtrxOutputSettings->setExtClock(settings.m_extClock ? 1 : 0); } if (deviceSettingsKeys.contains("extClockFreq") || force) { swgXtrxOutputSettings->setExtClockFreq(settings.m_extClockFreq); } if (deviceSettingsKeys.contains("pwrmode") || force) { swgXtrxOutputSettings->setPwrmode(settings.m_pwrmode); } QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/settings") .arg(settings.m_reverseAPIAddress) .arg(settings.m_reverseAPIPort) .arg(settings.m_reverseAPIDeviceIndex); m_networkRequest.setUrl(QUrl(deviceSettingsURL)); m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json"); QBuffer *buffer=new QBuffer(); buffer->open((QBuffer::ReadWrite)); buffer->write(swgDeviceSettings->asJson().toUtf8()); buffer->seek(0); // Always use PATCH to avoid passing reverse API settings m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer); delete swgDeviceSettings; } void XTRXOutput::webapiReverseSendStartStop(bool start) { QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/run") .arg(m_settings.m_reverseAPIAddress) .arg(m_settings.m_reverseAPIPort) .arg(m_settings.m_reverseAPIDeviceIndex); m_networkRequest.setUrl(QUrl(deviceSettingsURL)); if (start) { m_networkManager->sendCustomRequest(m_networkRequest, "POST"); } else { m_networkManager->sendCustomRequest(m_networkRequest, "DELETE"); } } void XTRXOutput::networkManagerFinished(QNetworkReply *reply) { QNetworkReply::NetworkError replyError = reply->error(); if (replyError) { qWarning() << "XTRXOutput::networkManagerFinished:" << " error(" << (int) replyError << "): " << replyError << ": " << reply->errorString(); return; } QString answer = reply->readAll(); answer.chop(1); // remove last \n qDebug("XTRXOutput::networkManagerFinished: reply:\n%s", answer.toStdString().c_str()); }