/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB. // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "SWGGLSpectrum.h" #include "util/simpleserializer.h" #include "spectrumsettings.h" SpectrumSettings::SpectrumSettings() { resetToDefaults(); } SpectrumSettings::~SpectrumSettings() {} void SpectrumSettings::resetToDefaults() { m_fftSize = 1024; m_fftOverlap = 0; m_fftWindow = FFTWindow::Hanning; m_refLevel = 0; m_powerRange = 100; m_fpsPeriodMs = 50; m_decay = 1; m_decayDivisor = 1; m_histogramStroke = 30; m_displayGridIntensity = 5; m_displayTraceIntensity = 50; m_waterfallShare = 0.66; m_displayCurrent = true; m_displayWaterfall = true; m_invertedWaterfall = true; m_display3DSpectrogram = false; m_displayMaxHold = false; m_displayHistogram = false; m_displayGrid = false; m_truncateFreqScale = false; m_averagingMode = AvgModeNone; m_averagingIndex = 0; m_averagingValue = 1; m_linear = false; m_ssb = false; m_usb = true; m_wsSpectrum = false; m_wsSpectrumAddress = "127.0.0.1"; m_wsSpectrumPort = 8887; m_markersDisplay = MarkersDisplayNone; m_useCalibration = false; m_calibrationInterpMode = CalibInterpLinear; m_3DSpectrogramStyle = Outline; m_colorMap = "Angel"; m_spectrumStyle = Line; m_measurement = MeasurementNone; m_measurementCenterFrequencyOffset = 0; m_measurementBandwidth = 10000; m_measurementChSpacing = 10000; m_measurementAdjChBandwidth = 10000; m_measurementHarmonics = 5; m_measurementPeaks = 5; m_measurementHighlight = true; m_measurementsPosition = PositionBelow; m_measurementPrecision = 1; m_findHistogramPeaks = false; } QByteArray SpectrumSettings::serialize() const { SimpleSerializer s(1); s.writeS32(1, m_fftSize); s.writeS32(2, m_fftOverlap); s.writeS32(3, (int) m_fftWindow); s.writeReal(4, m_refLevel); s.writeReal(5, m_powerRange); s.writeBool(6, m_displayWaterfall); s.writeBool(7, m_invertedWaterfall); s.writeBool(8, m_displayMaxHold); s.writeBool(9, m_displayHistogram); s.writeS32(10, m_decay); s.writeBool(11, m_displayGrid); s.writeS32(13, m_displayGridIntensity); s.writeS32(14, m_decayDivisor); s.writeS32(15, m_histogramStroke); s.writeBool(16, m_displayCurrent); s.writeS32(17, m_displayTraceIntensity); s.writeReal(18, m_waterfallShare); s.writeS32(19, (int) m_averagingMode); s.writeS32(20, (qint32) getAveragingValue(m_averagingIndex, m_averagingMode)); s.writeBool(21, m_linear); s.writeString(22, m_wsSpectrumAddress); s.writeU32(23, m_wsSpectrumPort); s.writeBool(24, m_ssb); s.writeBool(25, m_usb); s.writeS32(26, m_fpsPeriodMs); s.writeBool(27, m_wsSpectrum); s.writeS32(28, (int) m_markersDisplay); s.writeBool(29, m_useCalibration); s.writeS32(30, (int) m_calibrationInterpMode); s.writeBool(31, m_display3DSpectrogram); s.writeS32(32, (int) m_3DSpectrogramStyle); s.writeString(33, m_colorMap); s.writeS32(34, (int) m_spectrumStyle); s.writeS32(35, (int) m_measurement); s.writeS32(36, m_measurementBandwidth); s.writeS32(37, m_measurementChSpacing); s.writeS32(38, m_measurementAdjChBandwidth); s.writeS32(39, m_measurementHarmonics); // 41, 42 used below s.writeBool(42, m_measurementHighlight); s.writeS32(43, m_measurementPeaks); s.writeS32(44, (int)m_measurementsPosition); s.writeS32(45, m_measurementPrecision); s.writeS32(46, m_measurementCenterFrequencyOffset); s.writeBool(47, m_findHistogramPeaks); s.writeBool(48, m_truncateFreqScale); s.writeS32(100, m_histogramMarkers.size()); for (int i = 0; i < m_histogramMarkers.size(); i++) { s.writeBlob(101+i, m_histogramMarkers[i].serialize()); } s.writeS32(110, m_waterfallMarkers.size()); for (int i = 0; i < m_waterfallMarkers.size(); i++) { s.writeBlob(111+i, m_waterfallMarkers[i].serialize()); } QByteArray dataAnnotation; QDataStream *stream = new QDataStream(&dataAnnotation, QIODevice::WriteOnly); (*stream) << m_annoationMarkers; delete stream; s.writeBlob(40, dataAnnotation); QByteArray dataCalibration; stream = new QDataStream(&dataCalibration, QIODevice::WriteOnly); (*stream) << m_calibrationPoints; delete stream; s.writeBlob(41, dataCalibration); return s.final(); } QDataStream& operator<<(QDataStream& out, const SpectrumAnnotationMarker& marker) { out << marker.m_startFrequency; out << marker.m_bandwidth; out << marker.m_markerColor; out << (int) marker.m_show; out << marker.m_text; return out; } QDataStream& operator<<(QDataStream& out, const SpectrumCalibrationPoint& calibrationPoint) { out << calibrationPoint.m_frequency; out << calibrationPoint.m_powerRelativeReference; out << calibrationPoint.m_powerCalibratedReference; return out; } bool SpectrumSettings::deserialize(const QByteArray& data) { SimpleDeserializer d(data); if(!d.isValid()) { resetToDefaults(); return false; } int tmp; uint32_t utmp; QByteArray bytetmp; if (d.getVersion() == 1) { d.readS32(1, &m_fftSize, 1024); d.readS32(2, &m_fftOverlap, 0); d.readS32(3, &tmp, (int) FFTWindow::Hanning); m_fftWindow = (FFTWindow::Function) tmp; d.readReal(4, &m_refLevel, 0); d.readReal(5, &m_powerRange, 100); d.readBool(6, &m_displayWaterfall, true); d.readBool(7, &m_invertedWaterfall, true); d.readBool(8, &m_displayMaxHold, false); d.readBool(9, &m_displayHistogram, false); d.readS32(10, &m_decay, 1); d.readBool(11, &m_displayGrid, false); d.readS32(13, &m_displayGridIntensity, 5); d.readS32(14, &m_decayDivisor, 1); d.readS32(15, &m_histogramStroke, 30); d.readBool(16, &m_displayCurrent, true); d.readS32(17, &m_displayTraceIntensity, 50); d.readReal(18, &m_waterfallShare, 0.66); d.readS32(19, &tmp, 0); m_averagingMode = tmp < 0 ? AvgModeNone : tmp > 3 ? AvgModeMax : (AveragingMode) tmp; d.readS32(20, &tmp, 0); m_averagingIndex = getAveragingIndex(tmp, m_averagingMode); m_averagingValue = getAveragingValue(m_averagingIndex, m_averagingMode); d.readBool(21, &m_linear, false); d.readString(22, &m_wsSpectrumAddress, "127.0.0.1"); d.readU32(23, &utmp, 8887); m_wsSpectrumPort = utmp < 1024 ? 1024 : utmp > 65535 ? 65535 : utmp; d.readBool(24, &m_ssb, false); d.readBool(25, &m_usb, true); d.readS32(26, &tmp, 50); m_fpsPeriodMs = tmp < 5 ? 5 : tmp > 500 ? 500 : tmp; d.readBool(27, &m_wsSpectrum, false); d.readS32(28, &tmp, 0); m_markersDisplay = (MarkersDisplay) tmp; d.readBool(29, &m_useCalibration, false); d.readS32(30, &tmp, 0); m_calibrationInterpMode = (CalibrationInterpolationMode) tmp; d.readBool(31, &m_display3DSpectrogram, false); d.readS32(32, (int*)&m_3DSpectrogramStyle, (int)Outline); d.readString(33, &m_colorMap, "Angel"); d.readS32(34, (int*)&m_spectrumStyle, (int)Line); d.readS32(35, (int*)&m_measurement, (int)MeasurementNone); d.readS32(36, &m_measurementBandwidth, 10000); d.readS32(37, &m_measurementChSpacing, 10000); d.readS32(38, &m_measurementAdjChBandwidth, 10000); d.readS32(39, &m_measurementHarmonics, 5); d.readBool(42, &m_measurementHighlight, true); d.readS32(43, &m_measurementPeaks, 5); d.readS32(44, (int*)&m_measurementsPosition, (int)PositionBelow); d.readS32(45, &m_measurementPrecision, 1); d.readS32(46, &m_measurementCenterFrequencyOffset, 0); d.readBool(47, &m_findHistogramPeaks, false); d.readBool(48, &m_truncateFreqScale, false); int histogramMarkersSize; d.readS32(100, &histogramMarkersSize, 0); histogramMarkersSize = histogramMarkersSize < 0 ? 0 : histogramMarkersSize > SpectrumHistogramMarker::m_maxNbOfMarkers ? SpectrumHistogramMarker::m_maxNbOfMarkers : histogramMarkersSize; m_histogramMarkers.clear(); for (int i = 0; i < histogramMarkersSize; i++) { d.readBlob(101+i, &bytetmp); m_histogramMarkers.push_back(SpectrumHistogramMarker()); m_histogramMarkers.back().deserialize(bytetmp); } int waterfallMarkersSize; d.readS32(110, &waterfallMarkersSize, 0); waterfallMarkersSize = waterfallMarkersSize < 0 ? 0 : waterfallMarkersSize > SpectrumWaterfallMarker::m_maxNbOfMarkers ? SpectrumWaterfallMarker::m_maxNbOfMarkers : waterfallMarkersSize; m_waterfallMarkers.clear(); for (int i = 0; i < waterfallMarkersSize; i++) { d.readBlob(111+i, &bytetmp); m_waterfallMarkers.push_back(SpectrumWaterfallMarker()); m_waterfallMarkers.back().deserialize(bytetmp); } d.readBlob(40, &bytetmp); QDataStream *stream = new QDataStream(bytetmp); (*stream) >> m_annoationMarkers; delete stream; d.readBlob(41, &bytetmp); stream = new QDataStream(bytetmp); (*stream) >> m_calibrationPoints; delete stream; return true; } else { resetToDefaults(); return false; } } QDataStream& operator>>(QDataStream& in, SpectrumAnnotationMarker& marker) { int tmp; in >> marker.m_startFrequency; in >> marker.m_bandwidth; in >> marker.m_markerColor; in >> tmp; in >> marker.m_text; marker.m_show = (SpectrumAnnotationMarker::ShowState) tmp; return in; } QDataStream& operator>>(QDataStream& in, SpectrumCalibrationPoint& calibrationPoint) { in >> calibrationPoint.m_frequency; in >> calibrationPoint.m_powerRelativeReference; in >> calibrationPoint.m_powerCalibratedReference; return in; } void SpectrumSettings::formatTo(SWGSDRangel::SWGObject *swgObject) const { SWGSDRangel::SWGGLSpectrum *swgSpectrum = static_cast(swgObject); swgSpectrum->setFftWindow((int) m_fftWindow); swgSpectrum->setFftSize(m_fftSize); swgSpectrum->setFftOverlap(m_fftOverlap); swgSpectrum->setAveragingMode((int) m_averagingMode); swgSpectrum->setAveragingValue(SpectrumSettings::getAveragingValue(m_averagingIndex, m_averagingMode)); swgSpectrum->setRefLevel(m_refLevel); swgSpectrum->setPowerRange(m_powerRange); swgSpectrum->setFpsPeriodMs(m_fpsPeriodMs); swgSpectrum->setLinear(m_linear ? 1 : 0); swgSpectrum->setWsSpectrum(m_wsSpectrum ? 1 : 0); swgSpectrum->setWsSpectrumPort(m_wsSpectrumPort); if (swgSpectrum->getWsSpectrumAddress()) { *swgSpectrum->getWsSpectrumAddress() = m_wsSpectrumAddress; } else { swgSpectrum->setWsSpectrumAddress(new QString(m_wsSpectrumAddress)); } swgSpectrum->setDisplayHistogram(m_displayHistogram ? 1 : 0); swgSpectrum->setDecay(m_decay); swgSpectrum->setDecayDivisor(m_decayDivisor); swgSpectrum->setHistogramStroke(m_histogramStroke); swgSpectrum->setDisplayMaxHold(m_displayMaxHold ? 1 : 0); swgSpectrum->setDisplayCurrent(m_displayCurrent ? 1 : 0); swgSpectrum->setDisplayTraceIntensity(m_displayTraceIntensity); swgSpectrum->setInvertedWaterfall(m_invertedWaterfall ? 1 : 0); swgSpectrum->setDisplayWaterfall(m_displayWaterfall ? 1 : 0); swgSpectrum->setDisplayGrid(m_displayGrid ? 1 : 0); swgSpectrum->setDisplayGridIntensity(m_displayGridIntensity); swgSpectrum->setSsb(m_ssb ? 1 : 0); swgSpectrum->setUsb(m_usb ? 1 : 0); swgSpectrum->setWaterfallShare(m_waterfallShare); swgSpectrum->setMarkersDisplay((int) m_markersDisplay); swgSpectrum->setUseCalibration(m_useCalibration ? 1 : 0); swgSpectrum->setCalibrationInterpMode((int) m_calibrationInterpMode); if (m_histogramMarkers.size() > 0) { swgSpectrum->setHistogramMarkers(new QList); for (const auto &marker : m_histogramMarkers) { swgSpectrum->getHistogramMarkers()->append(new SWGSDRangel::SWGSpectrumHistogramMarker); swgSpectrum->getHistogramMarkers()->back()->setFrequency(marker.m_frequency); swgSpectrum->getHistogramMarkers()->back()->setPower(marker.m_power); swgSpectrum->getHistogramMarkers()->back()->setMarkerType((int) marker.m_markerType); swgSpectrum->getHistogramMarkers()->back()->setMarkerColor(qColorToInt(marker.m_markerColor)); swgSpectrum->getHistogramMarkers()->back()->setShow(marker.m_show ? 1 : 0); } } if (m_waterfallMarkers.size() > 0) { swgSpectrum->setWaterfallMarkers(new QList); for (const auto &marker : m_waterfallMarkers) { swgSpectrum->getWaterfallMarkers()->append(new SWGSDRangel::SWGSpectrumWaterfallMarker); swgSpectrum->getWaterfallMarkers()->back()->setFrequency(marker.m_frequency); swgSpectrum->getWaterfallMarkers()->back()->setTime(marker.m_time); swgSpectrum->getWaterfallMarkers()->back()->setMarkerColor(qColorToInt(marker.m_markerColor)); swgSpectrum->getWaterfallMarkers()->back()->setShow(marker.m_show ? 1 : 0); } } if (m_annoationMarkers.size() > 0) { swgSpectrum->setAnnotationMarkers(new QList); for (const auto &marker : m_annoationMarkers) { swgSpectrum->getAnnotationMarkers()->append(new SWGSDRangel::SWGSpectrumAnnotationMarker); swgSpectrum->getAnnotationMarkers()->back()->setStartFrequency(marker.m_startFrequency); swgSpectrum->getAnnotationMarkers()->back()->setBandwidth(marker.m_bandwidth); swgSpectrum->getAnnotationMarkers()->back()->setMarkerColor(qColorToInt(marker.m_markerColor)); swgSpectrum->getAnnotationMarkers()->back()->setShow((int) marker.m_show); } } if (m_calibrationPoints.size() > 0) { swgSpectrum->setCalibrationPoints(new QList); for (const auto &calibrationPoint : m_calibrationPoints) { swgSpectrum->getCalibrationPoints()->append(new SWGSDRangel::SWGSpectrumCalibrationPoint); swgSpectrum->getCalibrationPoints()->back()->setFrequency(calibrationPoint.m_frequency); swgSpectrum->getCalibrationPoints()->back()->setPowerRelativeReference(calibrationPoint.m_powerRelativeReference); swgSpectrum->getCalibrationPoints()->back()->setPowerAbsoluteReference(calibrationPoint.m_powerCalibratedReference); } } } void SpectrumSettings::updateFrom(const QStringList& keys, const SWGSDRangel::SWGObject *swgObject) { SWGSDRangel::SWGGLSpectrum *swgSpectrum = static_cast(const_cast(swgObject)); if (keys.contains("spectrumConfig.fftWindow")) { m_fftWindow = (FFTWindow::Function) swgSpectrum->getFftWindow(); } if (keys.contains("spectrumConfig.fftSize")) { m_fftSize = swgSpectrum->getFftSize(); } if (keys.contains("spectrumConfig.fftOverlap")) { m_fftOverlap = swgSpectrum->getFftOverlap(); } if (keys.contains("spectrumConfig.averagingMode")) { m_averagingMode = (SpectrumSettings::AveragingMode) swgSpectrum->getAveragingMode(); } if (keys.contains("spectrumConfig.averagingValue")) { m_averagingValue = swgSpectrum->getAveragingValue(); m_averagingIndex = SpectrumSettings::getAveragingIndex(m_averagingValue, m_averagingMode); } if (keys.contains("spectrumConfig.refLevel")) { m_refLevel = swgSpectrum->getRefLevel(); } if (keys.contains("spectrumConfig.powerRange")) { m_powerRange = swgSpectrum->getPowerRange(); } if (keys.contains("spectrumConfig.fpsPeriodMs")) { m_fpsPeriodMs = swgSpectrum->getFpsPeriodMs(); } if (keys.contains("spectrumConfig.linear")) { m_linear = swgSpectrum->getLinear() != 0; } if (keys.contains("spectrumConfig.wsSpectrum")) { m_wsSpectrum = swgSpectrum->getWsSpectrum() != 0; } if (keys.contains("spectrumConfig.wsSpectrum")) { m_wsSpectrum = swgSpectrum->getWsSpectrum() != 0; } if (keys.contains("spectrumConfig.wsSpectrumAddress")) { m_wsSpectrumAddress = *swgSpectrum->getWsSpectrumAddress(); } if (keys.contains("spectrumConfig.wsSpectrumPort")) { m_wsSpectrumPort = swgSpectrum->getWsSpectrumPort(); } if (keys.contains("spectrumConfig.displayHistogram")) { m_displayHistogram = swgSpectrum->getDisplayHistogram() != 0; } if (keys.contains("spectrumConfig.decay")) { m_decay = swgSpectrum->getDecay(); } if (keys.contains("spectrumConfig.decayDivisor")) { m_decayDivisor = swgSpectrum->getDecayDivisor(); } if (keys.contains("spectrumConfig.histogramStroke")) { m_histogramStroke = swgSpectrum->getHistogramStroke(); } if (keys.contains("spectrumConfig.displayMaxHold")) { m_displayMaxHold = swgSpectrum->getDisplayMaxHold() != 0; } if (keys.contains("spectrumConfig.displayCurrent")) { m_displayCurrent = swgSpectrum->getDisplayCurrent() != 0; } if (keys.contains("spectrumConfig.displayTraceIntensity")) { m_displayTraceIntensity = swgSpectrum->getDisplayTraceIntensity(); } if (keys.contains("spectrumConfig.invertedWaterfall")) { m_invertedWaterfall = swgSpectrum->getInvertedWaterfall() != 0; } if (keys.contains("spectrumConfig.displayWaterfall")) { m_displayWaterfall = swgSpectrum->getDisplayWaterfall() != 0; } if (keys.contains("spectrumConfig.displayGrid")) { m_displayGrid = swgSpectrum->getDisplayGrid() != 0; } if (keys.contains("spectrumConfig.displayGridIntensity")) { m_displayGridIntensity = swgSpectrum->getDisplayGridIntensity(); } if (keys.contains("spectrumConfig.ssb")) { m_ssb = swgSpectrum->getSsb() != 0; } if (keys.contains("spectrumConfig.usb")) { m_usb = swgSpectrum->getUsb() != 0; } if (keys.contains("spectrumConfig.waterfallShare")) { m_waterfallShare = swgSpectrum->getWaterfallShare(); } if (keys.contains("spectrumConfig.markersDisplay")) { m_markersDisplay = (SpectrumSettings::MarkersDisplay) swgSpectrum->getMarkersDisplay(); } if (keys.contains("spectrumConfig.useCalibration")) { m_useCalibration = swgSpectrum->getUseCalibration() != 0; } if (keys.contains("spectrumConfig.calibrationInterpMode")) { m_calibrationInterpMode = (CalibrationInterpolationMode) swgSpectrum->getCalibrationInterpMode(); } if (keys.contains("spectrumConfig.histogramMarkers")) { QList *swgHistogramMarkers = swgSpectrum->getHistogramMarkers(); m_histogramMarkers.clear(); int i = 0; for (const auto &swgHistogramMarker : *swgHistogramMarkers) { m_histogramMarkers.push_back(SpectrumHistogramMarker()); m_histogramMarkers.back().m_frequency = swgHistogramMarker->getFrequency(); m_histogramMarkers.back().m_power = swgHistogramMarker->getPower(); m_histogramMarkers.back().m_markerType = (SpectrumHistogramMarker::SpectrumMarkerType) swgHistogramMarker->getMarkerType(); m_histogramMarkers.back().m_markerColor = intToQColor(swgHistogramMarker->getMarkerColor()); m_histogramMarkers.back().m_show = swgHistogramMarker->getShow() != 0; if (i++ == 10) { // no more than 10 markers break; } } } if (keys.contains("spectrumConfig.waterfallMarkers")) { QList *swgWaterfallMarkers = swgSpectrum->getWaterfallMarkers(); m_waterfallMarkers.clear(); int i = 0; for (const auto &swgWaterfallMarker : *swgWaterfallMarkers) { m_waterfallMarkers.push_back(SpectrumWaterfallMarker()); m_waterfallMarkers.back().m_frequency = swgWaterfallMarker->getFrequency(); m_waterfallMarkers.back().m_time = swgWaterfallMarker->getTime(); m_waterfallMarkers.back().m_markerColor = intToQColor(swgWaterfallMarker->getMarkerColor()); m_waterfallMarkers.back().m_show = swgWaterfallMarker->getShow() != 0; if (i++ == 10) { // no more than 10 markers break; } } } if (keys.contains("spectrumConfig.annotationMarkers")) { QList *swgAnnotationMarkers = swgSpectrum->getAnnotationMarkers(); m_waterfallMarkers.clear(); for (const auto &swgAnnotationMarker : *swgAnnotationMarkers) { m_annoationMarkers.push_back(SpectrumAnnotationMarker()); m_annoationMarkers.back().m_startFrequency = swgAnnotationMarker->getStartFrequency(); m_annoationMarkers.back().m_bandwidth = swgAnnotationMarker->getBandwidth() < 0 ? 0 : swgAnnotationMarker->getBandwidth(); m_annoationMarkers.back().m_markerColor = intToQColor(swgAnnotationMarker->getMarkerColor()); m_annoationMarkers.back().m_show = (SpectrumAnnotationMarker::ShowState) swgAnnotationMarker->getShow(); } } if (keys.contains("spectrumConfig.calibrationPoints")) { QList *swgCalibrationPoints = swgSpectrum->getCalibrationPoints(); m_calibrationPoints.clear(); for (const auto &swgCalibrationPoint : *swgCalibrationPoints) { m_calibrationPoints.push_back(SpectrumCalibrationPoint()); m_calibrationPoints.back().m_frequency = swgCalibrationPoint->getFrequency(); m_calibrationPoints.back().m_powerRelativeReference = swgCalibrationPoint->getPowerRelativeReference(); m_calibrationPoints.back().m_powerCalibratedReference = swgCalibrationPoint->getPowerAbsoluteReference(); } } } int SpectrumSettings::getAveragingMaxScale(AveragingMode averagingMode) { if (averagingMode == AvgModeMoving) { return 3; // max 10k } else { return 5; // max 1M } } int SpectrumSettings::getAveragingValue(int averagingIndex, AveragingMode averagingMode) { if (averagingIndex <= 0) { return 1; } int v = averagingIndex - 1; int m = pow(10.0, v/3 > getAveragingMaxScale(averagingMode) ? getAveragingMaxScale(averagingMode) : v/3); int x = 1; if (v % 3 == 0) { x = 2; } else if (v % 3 == 1) { x = 5; } else if (v % 3 == 2) { x = 10; } return x * m; } int SpectrumSettings::getAveragingIndex(int averagingValue, AveragingMode averagingMode) { if (averagingValue <= 1) { return 0; } int v = averagingValue; int j = 0; for (int i = 0; i <= getAveragingMaxScale(averagingMode); i++) { if (v < 20) { if (v < 2) { j = 0; } else if (v < 5) { j = 1; } else if (v < 10) { j = 2; } else { j = 3; } return 3*i + j; } v /= 10; } return 3*getAveragingMaxScale(averagingMode) + 3; } uint64_t SpectrumSettings::getMaxAveragingValue(int fftSize, AveragingMode averagingMode) { if (averagingMode == AvgModeMoving) { uint64_t limit = (1UL<<28) / (sizeof(double)*fftSize); // 256 MB max return limit > (1<<14) ? (1<<14) : limit; // limit to 16 kS anyway } else { return (1<<20); // fixed 1 MS } } int SpectrumSettings::qColorToInt(const QColor& color) { return 256*256*color.blue() + 256*color.green() + color.red(); } QColor SpectrumSettings::intToQColor(int intColor) { int r = intColor % 256; int bg = intColor / 256; int g = bg % 256; int b = bg / 256; return QColor(r, g, b); }