///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2021 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see . //
///////////////////////////////////////////////////////////////////////////////////
#include "plutosdr/deviceplutosdrbox.h"
#include "dsp/samplemofifo.h"
#include "plutosdrmimosettings.h"
#include "plutosdrmothread.h"
PlutoSDRMOThread::PlutoSDRMOThread(DevicePlutoSDRBox* plutoBox, QObject* parent) :
QThread(parent),
m_running(false),
m_plutoBox(plutoBox),
m_log2Interp(0)
{
qDebug("PlutoSDRMOThread::PlutoSDRMOThread");
m_buf[0] = new qint16[2*PlutoSDRMIMOSettings::m_plutoSDRBlockSizeSamples];
m_buf[1] = new qint16[2*PlutoSDRMIMOSettings::m_plutoSDRBlockSizeSamples];
}
PlutoSDRMOThread::~PlutoSDRMOThread()
{
qDebug("PlutoSDRMOThread::~PlutoSDRMOThread");
if (m_running) {
stopWork();
}
delete[] m_buf[0];
delete[] m_buf[1];
}
void PlutoSDRMOThread::startWork()
{
m_startWaitMutex.lock();
start();
while(!m_running) {
m_startWaiter.wait(&m_startWaitMutex, 100);
}
m_startWaitMutex.unlock();
}
void PlutoSDRMOThread::stopWork()
{
m_running = false;
wait();
}
void PlutoSDRMOThread::setLog2Interpolation(unsigned int log2Interp)
{
qDebug("PlutoSDRMOThread::setLog2Interpolation: %u", log2Interp);
m_log2Interp = log2Interp;
}
unsigned int PlutoSDRMOThread::getLog2Interpolation() const
{
return m_log2Interp;
}
void PlutoSDRMOThread::setFcPos(int fcPos)
{
m_fcPos = fcPos;
}
int PlutoSDRMOThread::getFcPos() const
{
return m_fcPos;
}
void PlutoSDRMOThread::run()
{
std::ptrdiff_t p_inc = m_plutoBox->txBufferStep();
int sampleSize = 2*m_plutoBox->getTxSampleBytes(); // I/Q sample size in bytes
int nbChan = p_inc / sampleSize; // number of I/Q channels
qDebug("PlutoSDRMOThread::run: nbChan: %d", nbChan);
qDebug("PlutoSDRMOThread::run: I+Q bytes %d", sampleSize);
qDebug("PlutoSDRMOThread::run: txBufferStep: %ld bytes", p_inc);
qDebug("PlutoSDRMOThread::run: Rx all samples size is %ld bytes", m_plutoBox->getRxSampleSize());
qDebug("PlutoSDRMOThread::run: Tx all samples size is %ld bytes", m_plutoBox->getTxSampleSize());
qDebug("PlutoSDRMOThread::run: nominal nbytes_tx is %ld bytes", PlutoSDRMIMOSettings::m_plutoSDRBlockSizeSamples*p_inc);
m_running = true;
m_startWaiter.wakeAll();
while (m_running)
{
ssize_t nbytes_tx;
char *p_dat, *p_end;
int ihs = 0; // half sample index (I then Q to make a sample)
// WRITE: Get pointers to TX buf and number of bytes to read from FIFO
p_dat = m_plutoBox->txBufferFirst();
p_end = m_plutoBox->txBufferEnd();
int nbOutSamples = (p_end - p_dat) / (4*nbChan);
callback(m_buf, nbOutSamples);
// p_inc is 2 on a char* buffer therefore each iteration processes only the I or Q sample
// I and Q samples are processed one after the other
// conversion is not needed as samples are little endian
for (p_dat = m_plutoBox->txBufferFirst(), ihs = 0; p_dat < p_end; p_dat += p_inc, ihs += 2)
{
m_plutoBox->txChannelConvert((int16_t*) p_dat, &m_buf[0][ihs]);
if (nbChan > 1) { // interleave with second chanel
m_plutoBox->txChannelConvert(1, (int16_t*) (p_dat+sampleSize), &m_buf[1][ihs]);
}
}
// Schedule TX buffer for sending
nbytes_tx = m_plutoBox->txBufferPush();
if (nbytes_tx != nbChan*sampleSize*PlutoSDRMIMOSettings::m_plutoSDRBlockSizeSamples)
{
qDebug("PlutoSDRMOThread::run: error pushing buf %d / %d",
(int) nbytes_tx, (int) sampleSize*PlutoSDRMIMOSettings::m_plutoSDRBlockSizeSamples);
usleep(200000);
continue;
}
}
m_running = false;
}
void PlutoSDRMOThread::callback(qint16* buf[2], qint32 samplesPerChannel)
{
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
m_sampleFifo->readSync(samplesPerChannel/(1< decim=16). len is a number of samples (not a number of I or Q)
void PlutoSDRMOThread::callbackPart(qint16* buf[2], qint32 nSamples, int iBegin)
{
for (unsigned int channel = 0; channel < 2; channel++)
{
SampleVector::iterator begin = m_sampleFifo->getData(channel).begin() + iBegin;
if (m_log2Interp == 0)
{
m_interpolators[channel].interpolate1(&begin, buf[channel], 2*nSamples);
}
else
{
if (m_fcPos == 0) // Infra
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_inf(&begin, buf[channel], 2*nSamples);
break;
case 2:
m_interpolators[channel].interpolate4_inf(&begin, buf[channel], 2*nSamples);
break;
case 3:
m_interpolators[channel].interpolate8_inf(&begin, buf[channel], 2*nSamples);
break;
case 4:
m_interpolators[channel].interpolate16_inf(&begin, buf[channel], 2*nSamples);
break;
case 5:
m_interpolators[channel].interpolate32_inf(&begin, buf[channel], 2*nSamples);
break;
case 6:
m_interpolators[channel].interpolate64_inf(&begin, buf[channel], 2*nSamples);
break;
default:
break;
}
}
else if (m_fcPos == 1) // Supra
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_sup(&begin, buf[channel], 2*nSamples);
break;
case 2:
m_interpolators[channel].interpolate4_sup(&begin, buf[channel], 2*nSamples);
break;
case 3:
m_interpolators[channel].interpolate8_sup(&begin, buf[channel], 2*nSamples);
break;
case 4:
m_interpolators[channel].interpolate16_sup(&begin, buf[channel], 2*nSamples);
break;
case 5:
m_interpolators[channel].interpolate32_sup(&begin, buf[channel], 2*nSamples);
break;
case 6:
m_interpolators[channel].interpolate64_sup(&begin, buf[channel], 2*nSamples);
break;
default:
break;
}
}
else if (m_fcPos == 2) // Center
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_cen(&begin, buf[channel], 2*nSamples);
break;
case 2:
m_interpolators[channel].interpolate4_cen(&begin, buf[channel], 2*nSamples);
break;
case 3:
m_interpolators[channel].interpolate8_cen(&begin, buf[channel], 2*nSamples);
break;
case 4:
m_interpolators[channel].interpolate16_cen(&begin, buf[channel], 2*nSamples);
break;
case 5:
m_interpolators[channel].interpolate32_cen(&begin, buf[channel], 2*nSamples);
break;
case 6:
m_interpolators[channel].interpolate64_cen(&begin, buf[channel], 2*nSamples);
break;
default:
break;
}
}
}
}
}