/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "chanalyzerng.h" #include #include #include #include "device/devicesourceapi.h" #include "audio/audiooutput.h" #include "dsp/threadedbasebandsamplesink.h" #include "dsp/downchannelizer.h" MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgConfigureChannelAnalyzer, Message) MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgConfigureChannelAnalyzerOld, Message) MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgConfigureChannelizer, Message) MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgReportChannelSampleRateChanged, Message) const QString ChannelAnalyzerNG::m_channelIdURI = "sdrangel.channel.chanalyzerng"; const QString ChannelAnalyzerNG::m_channelId = "ChannelAnalyzerNG"; ChannelAnalyzerNG::ChannelAnalyzerNG(DeviceSourceAPI *deviceAPI) : ChannelSinkAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_sampleSink(0), m_settingsMutex(QMutex::Recursive) { setObjectName(m_channelId); m_undersampleCount = 0; m_sum = 0; m_usb = true; m_magsq = 0; m_useInterpolator = false; m_interpolatorDistance = 1.0f; m_interpolatorDistanceRemain = 0.0f; m_inputSampleRate = 48000; m_inputFrequencyOffset = 0; SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_inputSampleRate, m_settings.m_bandwidth / m_inputSampleRate, ssbFftLen); DSBFilter = new fftfilt(m_settings.m_bandwidth / m_inputSampleRate, 2*ssbFftLen); RRCFilter = new fftfilt(m_settings.m_bandwidth / m_inputSampleRate, 2*ssbFftLen); m_corr = new fftcorr(8*ssbFftLen); // 8k for 4k effective samples m_pll.computeCoefficients(0.002f, 0.5f, 10.0f); // bandwidth, damping factor, loop gain applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); applySettings(m_settings, true); m_channelizer = new DownChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); m_deviceAPI->addThreadedSink(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); } ChannelAnalyzerNG::~ChannelAnalyzerNG() { m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; delete SSBFilter; delete DSBFilter; delete RRCFilter; } void ChannelAnalyzerNG::configure(MessageQueue* messageQueue, int channelSampleRate, Real Bandwidth, Real LowCutoff, int spanLog2, bool ssb, bool pll, bool fll, unsigned int pllPskOrder) { Message* cmd = MsgConfigureChannelAnalyzerOld::create(channelSampleRate, Bandwidth, LowCutoff, spanLog2, ssb, pll, fll, pllPskOrder); messageQueue->push(cmd); } void ChannelAnalyzerNG::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly __attribute__((unused))) { fftfilt::cmplx *sideband = 0; Complex ci; m_settingsMutex.lock(); for(SampleVector::const_iterator it = begin; it < end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_useInterpolator) { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci, sideband); m_interpolatorDistanceRemain += m_interpolatorDistance; } } else { processOneSample(c, sideband); } } if(m_sampleSink != 0) { m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), m_settings.m_ssb); // m_ssb = positive only } m_sampleBuffer.clear(); m_settingsMutex.unlock(); } void ChannelAnalyzerNG::processOneSample(Complex& c, fftfilt::cmplx *sideband) { int n_out; int decim = 1<runSSB(c, &sideband, m_usb); } else { if (m_settings.m_rrc) { n_out = RRCFilter->runFilt(c, &sideband); } else { n_out = DSBFilter->runDSB(c, &sideband); } } for (int i = 0; i < n_out; i++) { // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display // smart decimation with bit gain using float arithmetic (23 bits significand) m_sum += sideband[i]; if (!(m_undersampleCount++ & (decim - 1))) // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1) { m_sum /= decim; Real re = m_sum.real() / SDR_RX_SCALEF; Real im = m_sum.imag() / SDR_RX_SCALEF; m_magsq = re*re + im*im; std::complex mix; if (m_settings.m_pll) { if (m_settings.m_fll) { m_fll.feed(re, im); // Use -fPLL to mix (exchange PLL real and image in the complex multiplication) mix = m_sum * std::conj(m_fll.getComplex()); } else { m_pll.feed(re, im); // Use -fPLL to mix (exchange PLL real and image in the complex multiplication) mix = m_sum * std::conj(m_pll.getComplex()); } } feedOneSample(m_settings.m_pll ? mix : m_sum, m_settings.m_fll ? m_fll.getComplex() : m_pll.getComplex()); m_sum = 0; } } } void ChannelAnalyzerNG::start() { applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); } void ChannelAnalyzerNG::stop() { } bool ChannelAnalyzerNG::handleMessage(const Message& cmd) { if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; qDebug() << "ChannelAnalyzerNG::handleMessage: DownChannelizer::MsgChannelizerNotification:" << " sampleRate: " << notif.getSampleRate() << " frequencyOffset: " << notif.getFrequencyOffset(); applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset()); if (getMessageQueueToGUI()) { MsgReportChannelSampleRateChanged *msg = MsgReportChannelSampleRateChanged::create(); getMessageQueueToGUI()->push(msg); } return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; qDebug() << "ChannelAnalyzerNG::handleMessage: MsgConfigureChannelizer:" << " sampleRate: " << cfg.getSampleRate() << " centerFrequency: " << cfg.getCenterFrequency(); m_channelizer->configure(m_channelizer->getInputMessageQueue(), cfg.getSampleRate(), cfg.getCenterFrequency()); return true; } else if (MsgConfigureChannelAnalyzer::match(cmd)) { qDebug("ChannelAnalyzerNG::handleMessage: MsgConfigureChannelAnalyzer"); MsgConfigureChannelAnalyzer& cfg = (MsgConfigureChannelAnalyzer&) cmd; applySettings(cfg.getSettings(), cfg.getForce()); return true; } else { if (m_sampleSink != 0) { return m_sampleSink->handleMessage(cmd); } else { return false; } } } void ChannelAnalyzerNG::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force) { qDebug() << "ChannelAnalyzerNG::applyChannelSettings:" << " inputSampleRate: " << inputSampleRate << " inputFrequencyOffset: " << inputFrequencyOffset; if ((m_inputFrequencyOffset != inputFrequencyOffset) || (m_inputSampleRate != inputSampleRate) || force) { m_nco.setFreq(-inputFrequencyOffset, inputSampleRate); } if ((m_inputSampleRate != inputSampleRate) || force) { m_settingsMutex.lock(); m_interpolator.create(16, inputSampleRate, inputSampleRate / 2.2f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) inputSampleRate / (Real) m_settings.m_downSampleRate; if (!m_settings.m_downSample) { setFilters(inputSampleRate, m_settings.m_bandwidth, m_settings.m_lowCutoff); m_pll.setSampleRate(inputSampleRate / (1<create_filter(lowCutoff / sampleRate, bandwidth / sampleRate); DSBFilter->create_dsb_filter(bandwidth / sampleRate); RRCFilter->create_rrc_filter(bandwidth / sampleRate, m_settings.m_rrcRolloff / 100.0); } void ChannelAnalyzerNG::applySettings(const ChannelAnalyzerNGSettings& settings, bool force) { qDebug() << "ChannelAnalyzerNG::applySettings:" << " m_downSample: " << settings.m_downSample << " m_downSampleRate: " << settings.m_downSampleRate << " m_rcc: " << settings.m_rrc << " m_rrcRolloff: " << settings.m_rrcRolloff / 100.0 << " m_bandwidth: " << settings.m_bandwidth << " m_lowCutoff: " << settings.m_lowCutoff << " m_spanLog2: " << settings.m_spanLog2 << " m_ssb: " << settings.m_ssb << " m_pll: " << settings.m_pll << " m_fll: " << settings.m_fll << " m_pllPskOrder: " << settings.m_pllPskOrder << " m_inputType: " << (int) settings.m_inputType; if ((settings.m_downSampleRate != m_settings.m_downSampleRate) || force) { m_settingsMutex.lock(); m_interpolator.create(16, m_inputSampleRate, m_inputSampleRate / 2.2); m_interpolatorDistanceRemain = 0.0f; m_interpolatorDistance = (Real) m_inputSampleRate / (Real) settings.m_downSampleRate; m_settingsMutex.unlock(); } if ((settings.m_downSample != m_settings.m_downSample) || force) { int sampleRate = settings.m_downSample ? settings.m_downSampleRate : m_inputSampleRate; m_settingsMutex.lock(); m_useInterpolator = settings.m_downSample; setFilters(sampleRate, settings.m_bandwidth, settings.m_lowCutoff); m_pll.setSampleRate(sampleRate / (1<create_rrc_filter(settings.m_bandwidth / sampleRate, settings.m_rrcRolloff / 100.0); m_settingsMutex.unlock(); } if ((settings.m_spanLog2 != m_settings.m_spanLog2) || force) { int sampleRate = (settings.m_downSample ? settings.m_downSampleRate : m_inputSampleRate) / (1<