// ---------------------------------------------------------------------------- // fftfilt.cxx -- Fast convolution Overlap-Add filter // // Filter implemented using overlap-add FFT convolution method // h(t) characterized by Windowed-Sinc impulse response // // Reference: // "The Scientist and Engineer's Guide to Digital Signal Processing" // by Dr. Steven W. Smith, http://www.dspguide.com // Chapters 16, 18 and 21 // // Copyright (C) 2006-2008 Dave Freese, W1HKJ // // This file is part of fldigi. // // Fldigi is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Fldigi is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with fldigi. If not, see . // ---------------------------------------------------------------------------- #include #include #include #include #include #include #include #include #include #include #include #include //------------------------------------------------------------------------------ // initialize the filter // create forward and reverse FFTs //------------------------------------------------------------------------------ // Only need a single instance of g_fft, used for both forward and reverse void fftfilt::init_filter() { flen2 = flen >> 1; fft = new g_fft(flen); filter = new cmplx[flen]; filterOpp = new cmplx[flen]; data = new cmplx[flen]; output = new cmplx[flen2]; ovlbuf = new cmplx[flen2]; memset(filter, 0, flen * sizeof(cmplx)); memset(filterOpp, 0, flen * sizeof(cmplx)); memset(data, 0, flen * sizeof(cmplx)); memset(output, 0, flen2 * sizeof(cmplx)); memset(ovlbuf, 0, flen2 * sizeof(cmplx)); inptr = 0; } //------------------------------------------------------------------------------ // fft filter // f1 < f2 ==> band pass filter // f1 > f2 ==> band reject filter // f1 == 0 ==> low pass filter // f2 == 0 ==> high pass filter //------------------------------------------------------------------------------ fftfilt::fftfilt(float f1, float f2, int len) { flen = len; pass = 0; window = 0; init_filter(); create_filter(f1, f2); } fftfilt::fftfilt(float f2, int len) { flen = len; pass = 0; window = 0; init_filter(); create_dsb_filter(f2); } fftfilt::~fftfilt() { if (fft) delete fft; if (filter) delete [] filter; if (filterOpp) delete [] filterOpp; if (data) delete [] data; if (output) delete [] output; if (ovlbuf) delete [] ovlbuf; } void fftfilt::create_filter(float f1, float f2) { // initialize the filter to zero memset(filter, 0, flen * sizeof(cmplx)); // create the filter shape coefficients by fft bool b_lowpass, b_highpass; b_lowpass = (f2 != 0); b_highpass = (f1 != 0); for (int i = 0; i < flen2; i++) { filter[i] = 0; // lowpass @ f2 if (b_lowpass) filter[i] += fsinc(f2, i, flen2); // highighpass @ f1 if (b_highpass) filter[i] -= fsinc(f1, i, flen2); } // highpass is delta[flen2/2] - h(t) if (b_highpass && f2 < f1) filter[flen2 / 2] += 1; for (int i = 0; i < flen2; i++) filter[i] *= _blackman(i, flen2); fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response) // normalize the output filter for unity gain float scale = 0, mag; for (int i = 0; i < flen2; i++) { mag = abs(filter[i]); if (mag > scale) scale = mag; } if (scale != 0) { for (int i = 0; i < flen; i++) filter[i] /= scale; } } // Double the size of FFT used for equivalent SSB filter or assume FFT is half the size of the one used for SSB void fftfilt::create_dsb_filter(float f2) { // initialize the filter to zero memset(filter, 0, flen * sizeof(cmplx)); for (int i = 0; i < flen2; i++) { filter[i] = fsinc(f2, i, flen2); filter[i] *= _blackman(i, flen2); } fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response) // normalize the output filter for unity gain float scale = 0, mag; for (int i = 0; i < flen2; i++) { mag = abs(filter[i]); if (mag > scale) scale = mag; } if (scale != 0) { for (int i = 0; i < flen; i++) filter[i] /= scale; } } // Double the size of FFT used for equivalent SSB filter or assume FFT is half the size of the one used for SSB // used with runAsym for in band / opposite band asymmetrical filtering. Can be used for vestigial sideband modulation. void fftfilt::create_asym_filter(float fopp, float fin) { // in band // initialize the filter to zero memset(filter, 0, flen * sizeof(cmplx)); for (int i = 0; i < flen2; i++) { filter[i] = fsinc(fin, i, flen2); filter[i] *= _blackman(i, flen2); } fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response) // normalize the output filter for unity gain float scale = 0, mag; for (int i = 0; i < flen2; i++) { mag = abs(filter[i]); if (mag > scale) scale = mag; } if (scale != 0) { for (int i = 0; i < flen; i++) filter[i] /= scale; } // opposite band // initialize the filter to zero memset(filterOpp, 0, flen * sizeof(cmplx)); for (int i = 0; i < flen2; i++) { filterOpp[i] = fsinc(fopp, i, flen2); filterOpp[i] *= _blackman(i, flen2); } fft->ComplexFFT(filterOpp); // filter was expressed in the time domain (impulse response) // normalize the output filter for unity gain scale = 0; for (int i = 0; i < flen2; i++) { mag = abs(filterOpp[i]); if (mag > scale) scale = mag; } if (scale != 0) { for (int i = 0; i < flen; i++) filterOpp[i] /= scale; } } // This filter is constructed directly from frequency domain response. Run with runFilt. void fftfilt::create_rrc_filter(float fb, float a) { std::fill(filter, filter+flen, 0); for (int i = 0; i < flen; i++) { filter[i] = frrc(fb, a, i, flen); } // normalize the output filter for unity gain float scale = 0, mag; for (int i = 0; i < flen; i++) { mag = abs(filter[i]); if (mag > scale) { scale = mag; } } if (scale != 0) { for (int i = 0; i < flen; i++) { filter[i] /= scale; } } } // test bypass int fftfilt::noFilt(const cmplx & in, cmplx **out) { data[inptr++] = in; if (inptr < flen2) return 0; inptr = 0; *out = data; return flen2; } // Filter with fast convolution (overlap-add algorithm). int fftfilt::runFilt(const cmplx & in, cmplx **out) { data[inptr++] = in; if (inptr < flen2) return 0; inptr = 0; fft->ComplexFFT(data); for (int i = 0; i < flen; i++) data[i] *= filter[i]; fft->InverseComplexFFT(data); for (int i = 0; i < flen2; i++) { output[i] = ovlbuf[i] + data[i]; ovlbuf[i] = data[flen2 + i]; } memset (data, 0, flen * sizeof(cmplx)); *out = output; return flen2; } // Second version for single sideband int fftfilt::runSSB(const cmplx & in, cmplx **out, bool usb, bool getDC) { data[inptr++] = in; if (inptr < flen2) return 0; inptr = 0; fft->ComplexFFT(data); // get or reject DC component data[0] = getDC ? data[0]*filter[0] : 0; // Discard frequencies for ssb if (usb) { for (int i = 1; i < flen2; i++) { data[i] *= filter[i]; data[flen2 + i] = 0; } } else { for (int i = 1; i < flen2; i++) { data[i] = 0; data[flen2 + i] *= filter[flen2 + i]; } } // in-place FFT: freqdata overwritten with filtered timedata fft->InverseComplexFFT(data); // overlap and add for (int i = 0; i < flen2; i++) { output[i] = ovlbuf[i] + data[i]; ovlbuf[i] = data[i+flen2]; } memset (data, 0, flen * sizeof(cmplx)); *out = output; return flen2; } // Version for double sideband. You have to double the FFT size used for SSB. int fftfilt::runDSB(const cmplx & in, cmplx **out, bool getDC) { data[inptr++] = in; if (inptr < flen2) return 0; inptr = 0; fft->ComplexFFT(data); for (int i = 0; i < flen2; i++) { data[i] *= filter[i]; data[flen2 + i] *= filter[flen2 + i]; } // get or reject DC component data[0] = getDC ? data[0] : 0; // in-place FFT: freqdata overwritten with filtered timedata fft->InverseComplexFFT(data); // overlap and add for (int i = 0; i < flen2; i++) { output[i] = ovlbuf[i] + data[i]; ovlbuf[i] = data[i+flen2]; } memset (data, 0, flen * sizeof(cmplx)); *out = output; return flen2; } // Version for asymmetrical sidebands. You have to double the FFT size used for SSB. int fftfilt::runAsym(const cmplx & in, cmplx **out, bool usb) { data[inptr++] = in; if (inptr < flen2) return 0; inptr = 0; fft->ComplexFFT(data); data[0] *= filter[0]; // always keep DC if (usb) { for (int i = 1; i < flen2; i++) { data[i] *= filter[i]; // usb data[flen2 + i] *= filterOpp[flen2 + i]; // lsb is the opposite } } else { for (int i = 1; i < flen2; i++) { data[i] *= filterOpp[i]; // usb is the opposite data[flen2 + i] *= filter[flen2 + i]; // lsb } } // in-place FFT: freqdata overwritten with filtered timedata fft->InverseComplexFFT(data); // overlap and add for (int i = 0; i < flen2; i++) { output[i] = ovlbuf[i] + data[i]; ovlbuf[i] = data[i+flen2]; } memset (data, 0, flen * sizeof(cmplx)); *out = output; return flen2; } /* Sliding FFT from Fldigi */ struct sfft::vrot_bins_pair { cmplx vrot; cmplx bins; } ; sfft::sfft(int len) { vrot_bins = new vrot_bins_pair[len]; delay = new cmplx[len]; fftlen = len; first = 0; last = len - 1; ptr = 0; double phi = 0.0, tau = 2.0 * M_PI/ len; k2 = 1.0; for (int i = 0; i < len; i++) { vrot_bins[i].vrot = cmplx( K1 * cos (phi), K1 * sin (phi) ); phi += tau; delay[i] = vrot_bins[i].bins = 0.0; k2 *= K1; } } sfft::~sfft() { delete [] vrot_bins; delete [] delay; } // Sliding FFT, cmplx input, cmplx output // FFT is computed for each value from first to last // Values are not stable until more than "len" samples have been processed. void sfft::run(const cmplx& input) { cmplx & de = delay[ptr]; const cmplx z( input.real() - k2 * de.real(), input.imag() - k2 * de.imag()); de = input; if (++ptr >= fftlen) ptr = 0; for (vrot_bins_pair *itr = vrot_bins + first, *end = vrot_bins + last; itr != end ; ++itr) itr->bins = (itr->bins + z) * itr->vrot; } // Copies the frequencies to a pointer. void sfft::fetch(float *result) { for (vrot_bins_pair *itr = vrot_bins, *end = vrot_bins + last; itr != end; ++itr, ++result) *result = itr->bins.real() * itr->bins.real() + itr->bins.imag() * itr->bins.imag(); }