///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see . //
///////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
#include
#include
#include
#include "SWGChannelSettings.h"
#include "SWGNFMDemodSettings.h"
#include "SWGChannelReport.h"
#include "SWGNFMDemodReport.h"
#include "dsp/downchannelizer.h"
#include "util/stepfunctions.h"
#include "util/db.h"
#include "audio/audiooutput.h"
#include "dsp/dspengine.h"
#include "dsp/threadedbasebandsamplesink.h"
#include "dsp/dspcommands.h"
#include "device/deviceapi.h"
#include "nfmdemod.h"
MESSAGE_CLASS_DEFINITION(NFMDemod::MsgConfigureNFMDemod, Message)
MESSAGE_CLASS_DEFINITION(NFMDemod::MsgConfigureChannelizer, Message)
MESSAGE_CLASS_DEFINITION(NFMDemod::MsgReportCTCSSFreq, Message)
const QString NFMDemod::m_channelIdURI = "sdrangel.channel.nfmdemod";
const QString NFMDemod::m_channelId = "NFMDemod";
static const double afSqTones[2] = {1000.0, 6000.0}; // {1200.0, 8000.0};
static const double afSqTones_lowrate[2] = {1000.0, 3500.0};
const int NFMDemod::m_udpBlockSize = 512;
NFMDemod::NFMDemod(DeviceAPI *devieAPI) :
ChannelAPI(m_channelIdURI, ChannelAPI::StreamSingleSink),
m_deviceAPI(devieAPI),
m_inputSampleRate(48000),
m_inputFrequencyOffset(0),
m_running(false),
m_ctcssIndex(0),
m_sampleCount(0),
m_squelchCount(0),
m_squelchGate(4800),
m_squelchLevel(-990),
m_squelchOpen(false),
m_afSquelchOpen(false),
m_magsq(0.0f),
m_magsqSum(0.0f),
m_magsqPeak(0.0f),
m_magsqCount(0),
m_afSquelch(),
m_squelchDelayLine(24000),
m_audioFifo(48000),
m_settingsMutex(QMutex::Recursive)
{
qDebug("NFMDemod::NFMDemod");
setObjectName(m_channelId);
m_audioBuffer.resize(1<<14);
m_audioBufferFill = 0;
m_agcLevel = 1.0;
DSPEngine::instance()->getAudioDeviceManager()->addAudioSink(&m_audioFifo, getInputMessageQueue());
m_audioSampleRate = DSPEngine::instance()->getAudioDeviceManager()->getOutputSampleRate();
m_discriCompensation = (m_audioSampleRate/48000.0f);
m_discriCompensation *= sqrt(m_discriCompensation);
m_ctcssDetector.setCoefficients(m_audioSampleRate/16, m_audioSampleRate/8.0f); // 0.5s / 2 Hz resolution
m_afSquelch.setCoefficients(m_audioSampleRate/2000, 600, m_audioSampleRate, 200, 0, afSqTones); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay
m_lowpass.create(301, m_audioSampleRate, 250.0);
applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true);
applySettings(m_settings, true);
m_channelizer = new DownChannelizer(this);
m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this);
m_deviceAPI->addChannelSink(m_threadedChannelizer);
m_deviceAPI->addChannelSinkAPI(this);
m_networkManager = new QNetworkAccessManager();
connect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
}
NFMDemod::~NFMDemod()
{
disconnect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
delete m_networkManager;
DSPEngine::instance()->getAudioDeviceManager()->removeAudioSink(&m_audioFifo);
m_deviceAPI->removeChannelSinkAPI(this);
m_deviceAPI->removeChannelSink(m_threadedChannelizer);
delete m_threadedChannelizer;
delete m_channelizer;
}
float arctan2(Real y, Real x)
{
Real coeff_1 = M_PI / 4;
Real coeff_2 = 3 * coeff_1;
Real abs_y = fabs(y) + 1e-10; // kludge to prevent 0/0 condition
Real angle;
if( x>= 0) {
Real r = (x - abs_y) / (x + abs_y);
angle = coeff_1 - coeff_1 * r;
} else {
Real r = (x + abs_y) / (abs_y - x);
angle = coeff_2 - coeff_1 * r;
}
if(y < 0) {
return(-angle);
} else {
return(angle);
}
}
Real angleDist(Real a, Real b)
{
Real dist = b - a;
while(dist <= M_PI)
dist += 2 * M_PI;
while(dist >= M_PI)
dist -= 2 * M_PI;
return dist;
}
void NFMDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst)
{
(void) firstOfBurst;
Complex ci;
if (!m_running) {
return;
}
m_settingsMutex.lock();
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
qint16 sample;
double magsqRaw; // = ci.real()*ci.real() + c.imag()*c.imag();
Real deviation;
Real demod = m_phaseDiscri.phaseDiscriminatorDelta(ci, magsqRaw, deviation);
Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED);
m_movingAverage(magsq);
m_magsqSum += magsq;
if (magsq > m_magsqPeak)
{
m_magsqPeak = magsq;
}
m_magsqCount++;
m_sampleCount++;
// AF processing
if (m_settings.m_deltaSquelch)
{
if (m_afSquelch.analyze(demod * m_discriCompensation))
{
m_afSquelchOpen = m_afSquelch.evaluate(); // ? m_squelchGate + m_squelchDecay : 0;
if (!m_afSquelchOpen) {
m_squelchDelayLine.zeroBack(m_audioSampleRate/10); // zero out evaluation period
}
}
if (m_afSquelchOpen)
{
m_squelchDelayLine.write(demod * m_discriCompensation);
if (m_squelchCount < 2*m_squelchGate) {
m_squelchCount++;
}
}
else
{
m_squelchDelayLine.write(0);
if (m_squelchCount > 0) {
m_squelchCount--;
}
}
}
else
{
if ((Real) m_movingAverage < m_squelchLevel)
{
m_squelchDelayLine.write(0);
if (m_squelchCount > 0) {
m_squelchCount--;
}
}
else
{
m_squelchDelayLine.write(demod * m_discriCompensation);
if (m_squelchCount < 2*m_squelchGate) {
m_squelchCount++;
}
}
}
m_squelchOpen = (m_squelchCount > m_squelchGate);
if (m_settings.m_audioMute)
{
sample = 0;
}
else
{
if (m_squelchOpen)
{
if (m_settings.m_ctcssOn)
{
Real ctcss_sample = m_lowpass.filter(demod * m_discriCompensation);
if ((m_sampleCount & 7) == 7) // decimate 48k -> 6k
{
if (m_ctcssDetector.analyze(&ctcss_sample))
{
int maxToneIndex;
if (m_ctcssDetector.getDetectedTone(maxToneIndex))
{
if (maxToneIndex+1 != m_ctcssIndex)
{
if (getMessageQueueToGUI()) {
MsgReportCTCSSFreq *msg = MsgReportCTCSSFreq::create(m_ctcssDetector.getToneSet()[maxToneIndex]);
getMessageQueueToGUI()->push(msg);
}
m_ctcssIndex = maxToneIndex+1;
}
}
else
{
if (m_ctcssIndex != 0)
{
if (getMessageQueueToGUI()) {
MsgReportCTCSSFreq *msg = MsgReportCTCSSFreq::create(0);
getMessageQueueToGUI()->push(msg);
}
m_ctcssIndex = 0;
}
}
}
}
}
if (m_settings.m_ctcssOn && m_ctcssIndexSelected && (m_ctcssIndexSelected != m_ctcssIndex))
{
sample = 0;
}
else
{
sample = m_bandpass.filter(m_squelchDelayLine.readBack(m_squelchGate)) * m_settings.m_volume;
}
}
else
{
if (m_ctcssIndex != 0)
{
if (getMessageQueueToGUI()) {
MsgReportCTCSSFreq *msg = MsgReportCTCSSFreq::create(0);
getMessageQueueToGUI()->push(msg);
}
m_ctcssIndex = 0;
}
sample = 0;
}
}
m_audioBuffer[m_audioBufferFill].l = sample;
m_audioBuffer[m_audioBufferFill].r = sample;
++m_audioBufferFill;
if (m_audioBufferFill >= m_audioBuffer.size())
{
uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill);
if (res != m_audioBufferFill)
{
qDebug("NFMDemod::feed: %u/%u audio samples written", res, m_audioBufferFill);
}
m_audioBufferFill = 0;
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
if (m_audioBufferFill > 0)
{
uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill);
if (res != m_audioBufferFill)
{
qDebug("NFMDemod::feed: %u/%u tail samples written", res, m_audioBufferFill);
}
m_audioBufferFill = 0;
}
m_settingsMutex.unlock();
}
void NFMDemod::start()
{
qDebug() << "NFMDemod::start";
m_squelchCount = 0;
m_audioFifo.clear();
m_phaseDiscri.reset();
applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true);
m_running = true;
}
void NFMDemod::stop()
{
qDebug() << "NFMDemod::stop";
m_running = false;
}
bool NFMDemod::handleMessage(const Message& cmd)
{
if (DownChannelizer::MsgChannelizerNotification::match(cmd))
{
DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd;
qDebug() << "NFMDemod::handleMessage: DownChannelizer::MsgChannelizerNotification";
applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset());
return true;
}
else if (MsgConfigureChannelizer::match(cmd))
{
MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd;
qDebug() << "NFMDemod::handleMessage: MsgConfigureChannelizer:"
<< " sampleRate: " << cfg.getSampleRate()
<< " centerFrequency: " << cfg.getCenterFrequency();
m_channelizer->configure(m_channelizer->getInputMessageQueue(),
cfg.getSampleRate(),
cfg.getCenterFrequency());
return true;
}
else if (MsgConfigureNFMDemod::match(cmd))
{
MsgConfigureNFMDemod& cfg = (MsgConfigureNFMDemod&) cmd;
qDebug() << "NFMDemod::handleMessage: MsgConfigureNFMDemod";
applySettings(cfg.getSettings(), cfg.getForce());
return true;
}
else if (BasebandSampleSink::MsgThreadedSink::match(cmd))
{
BasebandSampleSink::MsgThreadedSink& cfg = (BasebandSampleSink::MsgThreadedSink&) cmd;
const QThread *thread = cfg.getThread();
qDebug("NFMDemod::handleMessage: BasebandSampleSink::MsgThreadedSink: %p", thread);
return true;
}
else if (DSPConfigureAudio::match(cmd))
{
DSPConfigureAudio& cfg = (DSPConfigureAudio&) cmd;
uint32_t sampleRate = cfg.getSampleRate();
qDebug() << "NFMDemod::handleMessage: DSPConfigureAudio:"
<< " sampleRate: " << sampleRate;
if (sampleRate != m_audioSampleRate) {
applyAudioSampleRate(sampleRate);
}
return true;
}
else if (DSPSignalNotification::match(cmd))
{
return true;
}
else
{
return false;
}
}
void NFMDemod::applyAudioSampleRate(int sampleRate)
{
qDebug("NFMDemod::applyAudioSampleRate: %d", sampleRate);
MsgConfigureChannelizer* channelConfigMsg = MsgConfigureChannelizer::create(
sampleRate, m_settings.m_inputFrequencyOffset);
m_inputMessageQueue.push(channelConfigMsg);
m_settingsMutex.lock();
m_interpolator.create(16, m_inputSampleRate, m_settings.m_rfBandwidth / 2.2f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_inputSampleRate / (Real) sampleRate;
m_lowpass.create(301, sampleRate, 250.0);
m_bandpass.create(301, sampleRate, 300.0, m_settings.m_afBandwidth);
m_squelchGate = (sampleRate / 100) * m_settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate
m_squelchCount = 0; // reset squelch open counter
m_ctcssDetector.setCoefficients(sampleRate/16, sampleRate/8.0f); // 0.5s / 2 Hz resolution
if (sampleRate < 16000) {
m_afSquelch.setCoefficients(sampleRate/2000, 600, sampleRate, 200, 0, afSqTones_lowrate); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay
} else {
m_afSquelch.setCoefficients(sampleRate/2000, 600, sampleRate, 200, 0, afSqTones); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay
}
m_discriCompensation = (sampleRate/48000.0f);
m_discriCompensation *= sqrt(m_discriCompensation);
m_phaseDiscri.setFMScaling(sampleRate / static_cast(m_settings.m_fmDeviation));
m_audioFifo.setSize(sampleRate);
m_squelchDelayLine.resize(sampleRate/2);
m_settingsMutex.unlock();
m_audioSampleRate = sampleRate;
}
void NFMDemod::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force)
{
qDebug() << "NFMDemod::applyChannelSettings:"
<< " inputSampleRate: " << inputSampleRate
<< " inputFrequencyOffset: " << inputFrequencyOffset;
if ((inputFrequencyOffset != m_inputFrequencyOffset) ||
(inputSampleRate != m_inputSampleRate) || force)
{
m_nco.setFreq(-inputFrequencyOffset, inputSampleRate);
}
if ((inputSampleRate != m_inputSampleRate) || force)
{
m_settingsMutex.lock();
m_interpolator.create(16, inputSampleRate, m_settings.m_rfBandwidth / 2.2f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) inputSampleRate / (Real) m_audioSampleRate;
m_settingsMutex.unlock();
}
m_inputSampleRate = inputSampleRate;
m_inputFrequencyOffset = inputFrequencyOffset;
}
void NFMDemod::applySettings(const NFMDemodSettings& settings, bool force)
{
qDebug() << "NFMDemod::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_afBandwidth: " << settings.m_afBandwidth
<< " m_fmDeviation: " << settings.m_fmDeviation
<< " m_volume: " << settings.m_volume
<< " m_squelchGate: " << settings.m_squelchGate
<< " m_deltaSquelch: " << settings.m_deltaSquelch
<< " m_squelch: " << settings.m_squelch
<< " m_ctcssIndex: " << settings.m_ctcssIndex
<< " m_ctcssOn: " << settings.m_ctcssOn
<< " m_audioMute: " << settings.m_audioMute
<< " m_audioDeviceName: " << settings.m_audioDeviceName
<< " m_useReverseAPI: " << settings.m_useReverseAPI
<< " m_reverseAPIAddress: " << settings.m_reverseAPIAddress
<< " m_reverseAPIPort: " << settings.m_reverseAPIPort
<< " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex
<< " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex
<< " force: " << force;
QList reverseAPIKeys;
if ((settings.m_inputFrequencyOffset != m_settings.m_inputFrequencyOffset) || force) {
reverseAPIKeys.append("inputFrequencyOffset");
}
if ((settings.m_volume != m_settings.m_volume) || force) {
reverseAPIKeys.append("volume");
}
if ((settings.m_ctcssOn != m_settings.m_ctcssOn) || force) {
reverseAPIKeys.append("ctcssOn");
}
if ((settings.m_audioMute != m_settings.m_audioMute) || force) {
reverseAPIKeys.append("audioMute");
}
if ((settings.m_rgbColor != m_settings.m_rgbColor) || force) {
reverseAPIKeys.append("rgbColor");
}
if ((settings.m_title != m_settings.m_title) || force) {
reverseAPIKeys.append("title");
}
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force)
{
reverseAPIKeys.append("rfBandwidth");
m_settingsMutex.lock();
m_interpolator.create(16, m_inputSampleRate, settings.m_rfBandwidth / 2.2);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_inputSampleRate / (Real) m_audioSampleRate;
m_settingsMutex.unlock();
}
if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force)
{
reverseAPIKeys.append("fmDeviation");
m_phaseDiscri.setFMScaling((8.0f*m_audioSampleRate) / static_cast(settings.m_fmDeviation)); // integrate 4x factor
}
if ((settings.m_afBandwidth != m_settings.m_afBandwidth) || force)
{
reverseAPIKeys.append("afBandwidth");
m_settingsMutex.lock();
m_bandpass.create(301, m_audioSampleRate, 300.0, settings.m_afBandwidth);
m_settingsMutex.unlock();
}
if ((settings.m_squelchGate != m_settings.m_squelchGate) || force)
{
reverseAPIKeys.append("squelchGate");
m_squelchGate = (m_audioSampleRate / 100) * settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate
m_squelchCount = 0; // reset squelch open counter
}
if ((settings.m_squelch != m_settings.m_squelch) || force) {
reverseAPIKeys.append("squelch");
}
if ((settings.m_deltaSquelch != m_settings.m_deltaSquelch) || force) {
reverseAPIKeys.append("deltaSquelch");
}
if ((settings.m_squelch != m_settings.m_squelch) ||
(settings.m_deltaSquelch != m_settings.m_deltaSquelch) || force)
{
if (settings.m_deltaSquelch)
{ // input is a value in negative centis
m_squelchLevel = (- settings.m_squelch) / 100.0;
m_afSquelch.setThreshold(m_squelchLevel);
m_afSquelch.reset();
}
else
{ // input is a value in deci-Bels
m_squelchLevel = std::pow(10.0, settings.m_squelch / 10.0);
m_movingAverage.reset();
}
m_squelchCount = 0; // reset squelch open counter
}
if ((settings.m_ctcssIndex != m_settings.m_ctcssIndex) || force)
{
reverseAPIKeys.append("ctcssIndex");
setSelectedCtcssIndex(settings.m_ctcssIndex);
}
if ((settings.m_audioDeviceName != m_settings.m_audioDeviceName) || force)
{
reverseAPIKeys.append("audioDeviceName");
AudioDeviceManager *audioDeviceManager = DSPEngine::instance()->getAudioDeviceManager();
int audioDeviceIndex = audioDeviceManager->getOutputDeviceIndex(settings.m_audioDeviceName);
//qDebug("AMDemod::applySettings: audioDeviceName: %s audioDeviceIndex: %d", qPrintable(settings.m_audioDeviceName), audioDeviceIndex);
audioDeviceManager->addAudioSink(&m_audioFifo, getInputMessageQueue(), audioDeviceIndex);
uint32_t audioSampleRate = audioDeviceManager->getOutputSampleRate(audioDeviceIndex);
if (m_audioSampleRate != audioSampleRate) {
applyAudioSampleRate(audioSampleRate);
}
}
if (settings.m_useReverseAPI)
{
bool fullUpdate = ((m_settings.m_useReverseAPI != settings.m_useReverseAPI) && settings.m_useReverseAPI) ||
(m_settings.m_reverseAPIAddress != settings.m_reverseAPIAddress) ||
(m_settings.m_reverseAPIPort != settings.m_reverseAPIPort) ||
(m_settings.m_reverseAPIDeviceIndex != settings.m_reverseAPIDeviceIndex) ||
(m_settings.m_reverseAPIChannelIndex != settings.m_reverseAPIChannelIndex);
webapiReverseSendSettings(reverseAPIKeys, settings, fullUpdate || force);
}
m_settings = settings;
}
QByteArray NFMDemod::serialize() const
{
return m_settings.serialize();
}
bool NFMDemod::deserialize(const QByteArray& data)
{
bool success = true;
if (!m_settings.deserialize(data))
{
m_settings.resetToDefaults();
success = false;
}
NFMDemod::MsgConfigureChannelizer* channelConfigMsg = NFMDemod::MsgConfigureChannelizer::create(
m_audioSampleRate, m_settings.m_inputFrequencyOffset);
m_inputMessageQueue.push(channelConfigMsg);
MsgConfigureNFMDemod *msg = MsgConfigureNFMDemod::create(m_settings, true);
m_inputMessageQueue.push(msg);
return success;
}
int NFMDemod::webapiSettingsGet(
SWGSDRangel::SWGChannelSettings& response,
QString& errorMessage)
{
(void) errorMessage;
response.setNfmDemodSettings(new SWGSDRangel::SWGNFMDemodSettings());
response.getNfmDemodSettings()->init();
webapiFormatChannelSettings(response, m_settings);
return 200;
}
int NFMDemod::webapiSettingsPutPatch(
bool force,
const QStringList& channelSettingsKeys,
SWGSDRangel::SWGChannelSettings& response,
QString& errorMessage)
{
(void) errorMessage;
NFMDemodSettings settings = m_settings;
bool frequencyOffsetChanged = false;
if (channelSettingsKeys.contains("afBandwidth")) {
settings.m_afBandwidth = response.getNfmDemodSettings()->getAfBandwidth();
}
if (channelSettingsKeys.contains("audioMute")) {
settings.m_audioMute = response.getNfmDemodSettings()->getAudioMute() != 0;
}
if (channelSettingsKeys.contains("ctcssIndex")) {
settings.m_ctcssIndex = response.getNfmDemodSettings()->getCtcssIndex();
}
if (channelSettingsKeys.contains("ctcssOn")) {
settings.m_ctcssOn = response.getNfmDemodSettings()->getCtcssOn() != 0;
}
if (channelSettingsKeys.contains("deltaSquelch")) {
settings.m_deltaSquelch = response.getNfmDemodSettings()->getDeltaSquelch() != 0;
}
if (channelSettingsKeys.contains("fmDeviation")) {
settings.m_fmDeviation = response.getNfmDemodSettings()->getFmDeviation();
}
if (channelSettingsKeys.contains("inputFrequencyOffset"))
{
settings.m_inputFrequencyOffset = response.getNfmDemodSettings()->getInputFrequencyOffset();
frequencyOffsetChanged = true;
}
if (channelSettingsKeys.contains("rfBandwidth")) {
settings.m_rfBandwidth = response.getNfmDemodSettings()->getRfBandwidth();
}
if (channelSettingsKeys.contains("rgbColor")) {
settings.m_rgbColor = response.getNfmDemodSettings()->getRgbColor();
}
if (channelSettingsKeys.contains("squelch")) {
settings.m_squelch = response.getNfmDemodSettings()->getSquelch();
}
if (channelSettingsKeys.contains("squelchGate")) {
settings.m_squelchGate = response.getNfmDemodSettings()->getSquelchGate();
}
if (channelSettingsKeys.contains("title")) {
settings.m_title = *response.getNfmDemodSettings()->getTitle();
}
if (channelSettingsKeys.contains("volume")) {
settings.m_volume = response.getNfmDemodSettings()->getVolume();
}
if (channelSettingsKeys.contains("audioDeviceName")) {
settings.m_audioDeviceName = *response.getNfmDemodSettings()->getAudioDeviceName();
}
if (channelSettingsKeys.contains("useReverseAPI")) {
settings.m_useReverseAPI = response.getNfmDemodSettings()->getUseReverseApi() != 0;
}
if (channelSettingsKeys.contains("reverseAPIAddress")) {
settings.m_reverseAPIAddress = *response.getNfmDemodSettings()->getReverseApiAddress();
}
if (channelSettingsKeys.contains("reverseAPIPort")) {
settings.m_reverseAPIPort = response.getNfmDemodSettings()->getReverseApiPort();
}
if (channelSettingsKeys.contains("reverseAPIDeviceIndex")) {
settings.m_reverseAPIDeviceIndex = response.getNfmDemodSettings()->getReverseApiDeviceIndex();
}
if (channelSettingsKeys.contains("reverseAPIChannelIndex")) {
settings.m_reverseAPIChannelIndex = response.getNfmDemodSettings()->getReverseApiChannelIndex();
}
if (frequencyOffsetChanged)
{
MsgConfigureChannelizer* channelConfigMsg = MsgConfigureChannelizer::create(
m_audioSampleRate, settings.m_inputFrequencyOffset);
m_inputMessageQueue.push(channelConfigMsg);
}
MsgConfigureNFMDemod *msg = MsgConfigureNFMDemod::create(settings, force);
m_inputMessageQueue.push(msg);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgConfigureNFMDemod *msgToGUI = MsgConfigureNFMDemod::create(settings, force);
m_guiMessageQueue->push(msgToGUI);
}
webapiFormatChannelSettings(response, settings);
return 200;
}
int NFMDemod::webapiReportGet(
SWGSDRangel::SWGChannelReport& response,
QString& errorMessage)
{
(void) errorMessage;
response.setNfmDemodReport(new SWGSDRangel::SWGNFMDemodReport());
response.getNfmDemodReport()->init();
webapiFormatChannelReport(response);
return 200;
}
void NFMDemod::webapiFormatChannelSettings(SWGSDRangel::SWGChannelSettings& response, const NFMDemodSettings& settings)
{
response.getNfmDemodSettings()->setAfBandwidth(settings.m_afBandwidth);
response.getNfmDemodSettings()->setAudioMute(settings.m_audioMute ? 1 : 0);
response.getNfmDemodSettings()->setCtcssIndex(settings.m_ctcssIndex);
response.getNfmDemodSettings()->setCtcssOn(settings.m_ctcssOn ? 1 : 0);
response.getNfmDemodSettings()->setDeltaSquelch(settings.m_deltaSquelch ? 1 : 0);
response.getNfmDemodSettings()->setFmDeviation(settings.m_fmDeviation);
response.getNfmDemodSettings()->setInputFrequencyOffset(settings.m_inputFrequencyOffset);
response.getNfmDemodSettings()->setRfBandwidth(settings.m_rfBandwidth);
response.getNfmDemodSettings()->setRgbColor(settings.m_rgbColor);
response.getNfmDemodSettings()->setSquelch(settings.m_squelch);
response.getNfmDemodSettings()->setSquelchGate(settings.m_squelchGate);
response.getNfmDemodSettings()->setVolume(settings.m_volume);
if (response.getNfmDemodSettings()->getTitle()) {
*response.getNfmDemodSettings()->getTitle() = settings.m_title;
} else {
response.getNfmDemodSettings()->setTitle(new QString(settings.m_title));
}
if (response.getNfmDemodSettings()->getAudioDeviceName()) {
*response.getNfmDemodSettings()->getAudioDeviceName() = settings.m_audioDeviceName;
} else {
response.getNfmDemodSettings()->setAudioDeviceName(new QString(settings.m_audioDeviceName));
}
response.getNfmDemodSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0);
if (response.getNfmDemodSettings()->getReverseApiAddress()) {
*response.getNfmDemodSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress;
} else {
response.getNfmDemodSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress));
}
response.getNfmDemodSettings()->setReverseApiPort(settings.m_reverseAPIPort);
response.getNfmDemodSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex);
response.getNfmDemodSettings()->setReverseApiChannelIndex(settings.m_reverseAPIChannelIndex);
}
void NFMDemod::webapiFormatChannelReport(SWGSDRangel::SWGChannelReport& response)
{
double magsqAvg, magsqPeak;
int nbMagsqSamples;
getMagSqLevels(magsqAvg, magsqPeak, nbMagsqSamples);
response.getNfmDemodReport()->setChannelPowerDb(CalcDb::dbPower(magsqAvg));
response.getNfmDemodReport()->setCtcssTone(m_settings.m_ctcssOn ? (m_ctcssIndex ? 0 : m_ctcssDetector.getToneSet()[m_ctcssIndex-1]) : 0);
response.getNfmDemodReport()->setSquelch(m_squelchOpen ? 1 : 0);
response.getNfmDemodReport()->setAudioSampleRate(m_audioSampleRate);
response.getNfmDemodReport()->setChannelSampleRate(m_inputSampleRate);
}
void NFMDemod::webapiReverseSendSettings(QList& channelSettingsKeys, const NFMDemodSettings& settings, bool force)
{
SWGSDRangel::SWGChannelSettings *swgChannelSettings = new SWGSDRangel::SWGChannelSettings();
swgChannelSettings->setDirection(0); // single sink (Rx)
swgChannelSettings->setOriginatorChannelIndex(getIndexInDeviceSet());
swgChannelSettings->setOriginatorDeviceSetIndex(getDeviceSetIndex());
swgChannelSettings->setChannelType(new QString("NFMDemod"));
swgChannelSettings->setNfmDemodSettings(new SWGSDRangel::SWGNFMDemodSettings());
SWGSDRangel::SWGNFMDemodSettings *swgNFMDemodSettings = swgChannelSettings->getNfmDemodSettings();
// transfer data that has been modified. When force is on transfer all data except reverse API data
if (channelSettingsKeys.contains("afBandwidth") || force) {
swgNFMDemodSettings->setAfBandwidth(settings.m_afBandwidth);
}
if (channelSettingsKeys.contains("audioMute") || force) {
swgNFMDemodSettings->setAudioMute(settings.m_audioMute ? 1 : 0);
}
if (channelSettingsKeys.contains("ctcssIndex") || force) {
swgNFMDemodSettings->setCtcssIndex(settings.m_ctcssIndex);
}
if (channelSettingsKeys.contains("ctcssOn") || force) {
swgNFMDemodSettings->setCtcssOn(settings.m_ctcssOn ? 1 : 0);
}
if (channelSettingsKeys.contains("deltaSquelch") || force) {
swgNFMDemodSettings->setDeltaSquelch(settings.m_deltaSquelch ? 1 : 0);
}
if (channelSettingsKeys.contains("fmDeviation") || force) {
swgNFMDemodSettings->setFmDeviation(settings.m_fmDeviation);
}
if (channelSettingsKeys.contains("inputFrequencyOffset") || force) {
swgNFMDemodSettings->setInputFrequencyOffset(settings.m_inputFrequencyOffset);
}
if (channelSettingsKeys.contains("rfBandwidth") || force) {
swgNFMDemodSettings->setRfBandwidth(settings.m_rfBandwidth);
}
if (channelSettingsKeys.contains("rgbColor") || force) {
swgNFMDemodSettings->setRgbColor(settings.m_rgbColor);
}
if (channelSettingsKeys.contains("squelch") || force) {
swgNFMDemodSettings->setSquelch(settings.m_squelch);
}
if (channelSettingsKeys.contains("squelchGate") || force) {
swgNFMDemodSettings->setSquelchGate(settings.m_squelchGate);
}
if (channelSettingsKeys.contains("title") || force) {
swgNFMDemodSettings->setTitle(new QString(settings.m_title));
}
if (channelSettingsKeys.contains("volume") || force) {
swgNFMDemodSettings->setVolume(settings.m_volume);
}
if (channelSettingsKeys.contains("audioDeviceName") || force) {
swgNFMDemodSettings->setAudioDeviceName(new QString(settings.m_audioDeviceName));
}
QString channelSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/channel/%4/settings")
.arg(settings.m_reverseAPIAddress)
.arg(settings.m_reverseAPIPort)
.arg(settings.m_reverseAPIDeviceIndex)
.arg(settings.m_reverseAPIChannelIndex);
m_networkRequest.setUrl(QUrl(channelSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer=new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgChannelSettings->asJson().toUtf8());
buffer->seek(0);
// Always use PATCH to avoid passing reverse API settings
m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer);
delete swgChannelSettings;
}
void NFMDemod::networkManagerFinished(QNetworkReply *reply)
{
QNetworkReply::NetworkError replyError = reply->error();
if (replyError)
{
qWarning() << "NFMDemod::networkManagerFinished:"
<< " error(" << (int) replyError
<< "): " << replyError
<< ": " << reply->errorString();
return;
}
QString answer = reply->readAll();
answer.chop(1); // remove last \n
qDebug("NFMDemod::networkManagerFinished: reply:\n%s", answer.toStdString().c_str());
}