///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2022 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see . //
///////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
#include
#include
#include
#include
#include "SWGChannelSettings.h"
#include "SWGDSDDemodSettings.h"
#include "SWGChannelReport.h"
#include "SWGDSDDemodReport.h"
#include "dsp/dspengine.h"
#include "dsp/basebandsamplesink.h"
#include "dsp/datafifo.h"
#include "dsp/dspcommands.h"
#include "feature/feature.h"
#include "audio/audiooutputdevice.h"
#include "util/db.h"
#include "util/messagequeue.h"
#include "maincore.h"
#include "m17demodsink.h"
M17DemodSink::M17DemodSink() :
m_channelSampleRate(48000),
m_channelFrequencyOffset(0),
m_audioSampleRate(48000),
m_interpolatorDistance(0.0f),
m_interpolatorDistanceRemain(0.0f),
m_sampleCount(0),
m_squelchCount(0),
m_squelchGate(0),
m_squelchLevel(1e-4),
m_squelchOpen(false),
m_squelchWasOpen(false),
m_squelchDelayLine(24000),
m_audioFifo(48000),
m_scopeXY(nullptr),
m_scopeEnabled(true)
{
m_audioBuffer.resize(1<<14);
m_audioBufferFill = 0;
m_demodBuffer.resize(1<<12);
m_demodBufferFill = 0;
m_m17DemodProcessor.setAudioFifo(&m_audioFifo);
m_sampleBuffer = new FixReal[1<<17]; // 128 kS
m_sampleBufferIndex = 0;
m_scaleFromShort = SDR_RX_SAMP_SZ < sizeof(short)*8 ? 1 : 1<<(SDR_RX_SAMP_SZ - sizeof(short)*8);
m_magsq = 0.0f;
m_magsqSum = 0.0f;
m_magsqPeak = 0.0f;
m_magsqCount = 0;
applySettings(m_settings, QList(), true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
M17DemodSink::~M17DemodSink()
{
delete[] m_sampleBuffer;
}
void M17DemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
Complex ci;
int samplesPerSymbol = 10;
m_scopeSampleBuffer.clear();
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
FixReal sample, delayedSample;
qint16 sampleM17;
Real re = ci.real() / SDR_RX_SCALED;
Real im = ci.imag() / SDR_RX_SCALED;
Real magsq = re*re + im*im;
m_movingAverage(magsq);
m_magsqSum += magsq;
if (magsq > m_magsqPeak) {
m_magsqPeak = magsq;
}
m_magsqCount++;
Real demod = m_phaseDiscri.phaseDiscriminator(ci);
m_sampleCount++;
// AF processing
if (m_movingAverage.asDouble() > m_squelchLevel)
{
if (m_squelchGate > 0)
{
if (m_squelchCount < m_squelchGate*2) {
m_squelchCount++;
}
m_squelchDelayLine.write(demod);
m_squelchOpen = m_squelchCount > m_squelchGate;
}
else
{
m_squelchOpen = true;
}
}
else
{
if (m_squelchGate > 0)
{
if (m_squelchCount > 0) {
m_squelchCount--;
}
m_squelchDelayLine.write(0);
m_squelchOpen = m_squelchCount > m_squelchGate;
}
else
{
m_squelchOpen = false;
}
}
if (m_squelchOpen)
{
if (m_squelchGate > 0)
{
sampleM17 = m_squelchDelayLine.readBack(m_squelchGate) * 32768.0f; // M17 decoder takes int16 samples
m_m17DemodProcessor.pushSample(sampleM17);
sample = m_squelchDelayLine.readBack(m_squelchGate) * SDR_RX_SCALEF; // scale to sample size
}
else
{
sampleM17 = demod * 32768.0f; // M17 decoder takes int16 samples
m_m17DemodProcessor.pushSample(sampleM17);
sample = demod * SDR_RX_SCALEF; // scale to sample size
}
}
else
{
sampleM17 = 0;
sample = 0;
if (m_squelchWasOpen)
{
if (m_m17DemodProcessor.getStreamElsePacket()) { // if packet kepp last values
m_m17DemodProcessor.resetInfo();
}
m_m17DemodProcessor.setDCDOff(); // indicate loss of carrier
}
}
m_squelchWasOpen = m_squelchOpen;
m_demodBuffer[m_demodBufferFill] = sampleM17;
++m_demodBufferFill;
if (m_demodBufferFill >= m_demodBuffer.size())
{
QList dataPipes;
MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes);
if (dataPipes.size() > 0)
{
QList::iterator it = dataPipes.begin();
for (; it != dataPipes.end(); ++it)
{
DataFifo *fifo = qobject_cast((*it)->m_element);
if (fifo) {
fifo->write((quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16), DataFifo::DataTypeI16);
}
}
}
m_demodBufferFill = 0;
}
// if (m_settings.m_enableCosineFiltering) { // show actual input to FSK demod
// sample = m_dsdDecoder.getFilteredSample() * m_scaleFromShort;
// }
if (m_sampleBufferIndex < (1<<17)-1) {
m_sampleBufferIndex++;
} else {
m_sampleBufferIndex = 0;
}
m_sampleBuffer[m_sampleBufferIndex] = sample;
if (m_sampleBufferIndex < samplesPerSymbol) {
delayedSample = m_sampleBuffer[(1<<17) - samplesPerSymbol + m_sampleBufferIndex]; // wrap
} else {
delayedSample = m_sampleBuffer[m_sampleBufferIndex - samplesPerSymbol];
}
// if (m_settings.m_syncOrConstellation)
// {
// Sample s(sample, m_dsdDecoder.getSymbolSyncSample() * m_scaleFromShort * 0.84);
// m_scopeSampleBuffer.push_back(s);
// }
// else
// {
Sample s(sample, delayedSample); // I=signal, Q=signal delayed by 20 samples (2400 baud: lowest rate)
m_scopeSampleBuffer.push_back(s);
// }
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
if ((m_scopeXY != nullptr) && (m_scopeEnabled))
{
m_scopeXY->feed(m_scopeSampleBuffer.begin(), m_scopeSampleBuffer.end(), true); // true = real samples for what it's worth
}
}
void M17DemodSink::applyAudioSampleRate(int sampleRate)
{
if (sampleRate < 0)
{
qWarning("M17DemodSink::applyAudioSampleRate: invalid sample rate: %d", sampleRate);
return;
}
int upsampling = sampleRate / 8000;
qDebug("M17DemodSink::applyAudioSampleRate: audio rate: %d upsample by %d", sampleRate, upsampling);
if (sampleRate % 8000 != 0) {
qDebug("M17DemodSink::applyAudioSampleRate: audio will sound best with sample rates that are integer multiples of 8 kS/s");
}
m_m17DemodProcessor.setUpsampling(upsampling);
m_audioSampleRate = sampleRate;
QList pipes;
MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes);
if (pipes.size() > 0)
{
for (const auto& pipe : pipes)
{
MessageQueue *messageQueue = qobject_cast(pipe->m_element);
MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate);
messageQueue->push(msg);
}
}
}
void M17DemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "DSDDemodSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " inputFrequencyOffset: " << channelFrequencyOffset;
if ((channelFrequencyOffset != m_channelFrequencyOffset) ||
(channelSampleRate != m_channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((channelSampleRate != m_channelSampleRate) || force)
{
m_interpolator.create(16, channelSampleRate, (m_settings.m_rfBandwidth) / 2.2);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) channelSampleRate / (Real) 48000;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void M17DemodSink::applySettings(const M17DemodSettings& settings, const QList& settingsKeys, bool force)
{
qDebug() << "M17DemodSink::applySettings: "
<< " settingsKeys: " << settingsKeys
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_fmDeviation: " << settings.m_fmDeviation
<< " m_volume: " << settings.m_volume
<< " m_baudRate: " << settings.m_baudRate
<< " m_squelchGate" << settings.m_squelchGate
<< " m_squelch: " << settings.m_squelch
<< " m_audioMute: " << settings.m_audioMute
<< " m_syncOrConstellation: " << settings.m_syncOrConstellation
<< " m_highPassFilter: "<< settings.m_highPassFilter
<< " m_audioDeviceName: " << settings.m_audioDeviceName
<< " m_traceLengthMutliplier: " << settings.m_traceLengthMutliplier
<< " m_traceStroke: " << settings.m_traceStroke
<< " m_traceDecay: " << settings.m_traceDecay
<< " m_streamIndex: " << settings.m_streamIndex
<< " force: " << force;
if (settingsKeys.contains("rfBandwidth") || force)
{
m_interpolator.create(16, m_channelSampleRate, (settings.m_rfBandwidth) / 2.2);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) 48000;
//m_phaseDiscri.setFMScaling((float) settings.m_rfBandwidth / (float) settings.m_fmDeviation);
}
if (settingsKeys.contains("fmDeviation") || force) {
m_phaseDiscri.setFMScaling(48000.0f / (2.0f*settings.m_fmDeviation));
}
if (settingsKeys.contains("squelchGate") || force)
{
m_squelchGate = 480 * settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate
m_squelchCount = 0; // reset squelch open counter
}
if (settingsKeys.contains("squelch") || force) {
m_squelchLevel = std::pow(10.0, settings.m_squelch / 10.0); // input is a value in dB
}
if (settingsKeys.contains("audioMute") || force) {
m_m17DemodProcessor.setAudioMute(settings.m_audioMute);
}
if (settingsKeys.contains("volume") || force) {
m_m17DemodProcessor.setVolume(settings.m_volume);
}
if (settingsKeys.contains("baudRate") || force)
{
// m_dsdDecoder.setBaudRate(settings.m_baudRate); (future)
}
if (settingsKeys.contains("highPassFilter") || force) {
m_m17DemodProcessor.setHP(settings.m_highPassFilter);
}
if (force) {
m_settings = settings;
} else {
m_settings.applySettings(settingsKeys, settings);
}
}
void M17DemodSink::configureMyPosition(float myLatitude, float myLongitude)
{
m_latitude = myLatitude;
m_longitude = myLongitude;
}