/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "ssbmod.h" #include #include #include #include #include #include "SWGChannelSettings.h" #include "SWGChannelReport.h" #include "SWGSSBModReport.h" #include "dsp/upchannelizer.h" #include "dsp/dspengine.h" #include "dsp/threadedbasebandsamplesource.h" #include "dsp/dspcommands.h" #include "device/devicesinkapi.h" #include "util/db.h" MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureSSBMod, Message) MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureChannelizer, Message) MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureFileSourceName, Message) MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureFileSourceSeek, Message) MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureFileSourceStreamTiming, Message) MESSAGE_CLASS_DEFINITION(SSBMod::MsgReportFileSourceStreamData, Message) MESSAGE_CLASS_DEFINITION(SSBMod::MsgReportFileSourceStreamTiming, Message) const QString SSBMod::m_channelIdURI = "sdrangel.channeltx.modssb"; const QString SSBMod::m_channelId = "SSBMod"; const int SSBMod::m_levelNbSamples = 480; // every 10ms const int SSBMod::m_ssbFftLen = 1024; SSBMod::SSBMod(DeviceSinkAPI *deviceAPI) : ChannelSourceAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_basebandSampleRate(48000), m_outputSampleRate(48000), m_inputFrequencyOffset(0), m_SSBFilter(0), m_DSBFilter(0), m_SSBFilterBuffer(0), m_DSBFilterBuffer(0), m_SSBFilterBufferIndex(0), m_DSBFilterBufferIndex(0), m_sampleSink(0), m_audioFifo(4800), m_settingsMutex(QMutex::Recursive), m_fileSize(0), m_recordLength(0), m_sampleRate(48000), m_levelCalcCount(0), m_peakLevel(0.0f), m_levelSum(0.0f), m_inAGC(9600, 0.2, 1e-4), m_agcStepLength(2400) { setObjectName(m_channelId); DSPEngine::instance()->getAudioDeviceManager()->addAudioSource(&m_audioFifo, getInputMessageQueue()); m_audioSampleRate = DSPEngine::instance()->getAudioDeviceManager()->getInputSampleRate(); m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_audioSampleRate, m_settings.m_bandwidth / m_audioSampleRate, m_ssbFftLen); m_DSBFilter = new fftfilt((2.0f * m_settings.m_bandwidth) / m_audioSampleRate, 2 * m_ssbFftLen); m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size m_DSBFilterBuffer = new Complex[m_ssbFftLen]; memset(m_SSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen>>1)); memset(m_DSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen)); m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_sum.real(0.0f); m_sum.imag(0.0f); m_undersampleCount = 0; m_sumCount = 0; m_magsq = 0.0; m_toneNco.setFreq(1000.0, m_audioSampleRate); // CW keyer m_cwKeyer.setSampleRate(48000); m_cwKeyer.setWPM(13); m_cwKeyer.setMode(CWKeyerSettings::CWNone); m_inAGC.setGate(m_settings.m_agcThresholdGate); m_inAGC.setStepDownDelay(m_settings.m_agcThresholdDelay); m_inAGC.setClamping(true); applyChannelSettings(m_basebandSampleRate, m_outputSampleRate, m_inputFrequencyOffset, true); applySettings(m_settings, true); m_channelizer = new UpChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSource(m_channelizer, this); m_deviceAPI->addThreadedSource(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); } SSBMod::~SSBMod() { DSPEngine::instance()->getAudioDeviceManager()->removeAudioSource(&m_audioFifo); m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSource(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; delete m_SSBFilter; delete m_DSBFilter; delete[] m_SSBFilterBuffer; delete[] m_DSBFilterBuffer; } void SSBMod::pull(Sample& sample) { Complex ci; m_settingsMutex.lock(); if (m_interpolatorDistance > 1.0f) // decimate { modulateSample(); while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } else { if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } m_interpolatorDistanceRemain += m_interpolatorDistance; ci *= m_carrierNco.nextIQ(); // shift to carrier frequency ci *= 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot m_settingsMutex.unlock(); double magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); magsq /= (SDR_TX_SCALED*SDR_TX_SCALED); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); sample.m_real = (FixReal) ci.real(); sample.m_imag = (FixReal) ci.imag(); } void SSBMod::pullAudio(int nbSamples) { unsigned int nbSamplesAudio = nbSamples * ((Real) m_audioSampleRate / (Real) m_basebandSampleRate); if (nbSamplesAudio > m_audioBuffer.size()) { m_audioBuffer.resize(nbSamplesAudio); } m_audioFifo.read(reinterpret_cast(&m_audioBuffer[0]), nbSamplesAudio, 10); m_audioBufferFill = 0; } void SSBMod::modulateSample() { pullAF(m_modSample); calculateLevel(m_modSample); m_audioBufferFill++; } void SSBMod::pullAF(Complex& sample) { if (m_settings.m_audioMute) { sample.real(0.0f); sample.imag(0.0f); return; } Complex ci; fftfilt::cmplx *filtered; int n_out = 0; int decim = 1<<(m_settings.m_spanLog2 - 1); unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1) switch (m_settings.m_modAFInput) { case SSBModSettings::SSBModInputTone: if (m_settings.m_dsb) { Real t = m_toneNco.next()/1.25; sample.real(t); sample.imag(t); } else { if (m_settings.m_usb) { sample = m_toneNco.nextIQ(); } else { sample = m_toneNco.nextQI(); } } break; case SSBModSettings::SSBModInputFile: // Monaural (mono): // sox f4exb_call.wav --encoding float --endian little f4exb_call.raw // ffplay -f f32le -ar 48k -ac 1 f4exb_call.raw // Binaural (stereo): // sox f4exb_call.wav --encoding float --endian little f4exb_call.raw // ffplay -f f32le -ar 48k -ac 2 f4exb_call.raw if (m_ifstream.is_open()) { if (m_ifstream.eof()) { if (m_settings.m_playLoop) { m_ifstream.clear(); m_ifstream.seekg(0, std::ios::beg); } } if (m_ifstream.eof()) { ci.real(0.0f); ci.imag(0.0f); } else { if (m_settings.m_audioBinaural) { Complex c; m_ifstream.read(reinterpret_cast(&c), sizeof(Complex)); if (m_settings.m_audioFlipChannels) { ci.real(c.imag() * m_settings.m_volumeFactor); ci.imag(c.real() * m_settings.m_volumeFactor); } else { ci = c * m_settings.m_volumeFactor; } } else { Real real; m_ifstream.read(reinterpret_cast(&real), sizeof(Real)); if (m_settings.m_agc) { ci.real(real); ci.imag(0.0f); m_inAGC.feed(ci); ci *= m_settings.m_volumeFactor; } else { ci.real(real * m_settings.m_volumeFactor); ci.imag(0.0f); } } } } else { ci.real(0.0f); ci.imag(0.0f); } break; case SSBModSettings::SSBModInputAudio: if (m_settings.m_audioBinaural) { if (m_settings.m_audioFlipChannels) { ci.real((m_audioBuffer[m_audioBufferFill].r / SDR_TX_SCALEF) * m_settings.m_volumeFactor); ci.imag((m_audioBuffer[m_audioBufferFill].l / SDR_TX_SCALEF) * m_settings.m_volumeFactor); } else { ci.real((m_audioBuffer[m_audioBufferFill].l / SDR_TX_SCALEF) * m_settings.m_volumeFactor); ci.imag((m_audioBuffer[m_audioBufferFill].r / SDR_TX_SCALEF) * m_settings.m_volumeFactor); } } else { if (m_settings.m_agc) { ci.real(((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r) / 65536.0f)); ci.imag(0.0f); m_inAGC.feed(ci); ci *= m_settings.m_volumeFactor; } else { ci.real(((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r) / 65536.0f) * m_settings.m_volumeFactor); ci.imag(0.0f); } } break; case SSBModSettings::SSBModInputCWTone: Real fadeFactor; if (m_cwKeyer.getSample()) { m_cwKeyer.getCWSmoother().getFadeSample(true, fadeFactor); if (m_settings.m_dsb) { Real t = m_toneNco.next() * fadeFactor; sample.real(t); sample.imag(t); } else { if (m_settings.m_usb) { sample = m_toneNco.nextIQ() * fadeFactor; } else { sample = m_toneNco.nextQI() * fadeFactor; } } } else { if (m_cwKeyer.getCWSmoother().getFadeSample(false, fadeFactor)) { if (m_settings.m_dsb) { Real t = (m_toneNco.next() * fadeFactor)/1.25; sample.real(t); sample.imag(t); } else { if (m_settings.m_usb) { sample = m_toneNco.nextIQ() * fadeFactor; } else { sample = m_toneNco.nextQI() * fadeFactor; } } } else { sample.real(0.0f); sample.imag(0.0f); m_toneNco.setPhase(0); } } break; case SSBModSettings::SSBModInputNone: default: sample.real(0.0f); sample.imag(0.0f); break; } if ((m_settings.m_modAFInput == SSBModSettings::SSBModInputFile) || (m_settings.m_modAFInput == SSBModSettings::SSBModInputAudio)) // real audio { if (m_settings.m_dsb) { n_out = m_DSBFilter->runDSB(ci, &filtered); if (n_out > 0) { memcpy((void *) m_DSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex)); m_DSBFilterBufferIndex = 0; } sample = m_DSBFilterBuffer[m_DSBFilterBufferIndex]; m_DSBFilterBufferIndex++; } else { n_out = m_SSBFilter->runSSB(ci, &filtered, m_settings.m_usb); if (n_out > 0) { memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex)); m_SSBFilterBufferIndex = 0; } sample = m_SSBFilterBuffer[m_SSBFilterBufferIndex]; m_SSBFilterBufferIndex++; } if (n_out > 0) { for (int i = 0; i < n_out; i++) { // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display // smart decimation with bit gain using float arithmetic (23 bits significand) m_sum += filtered[i]; if (!(m_undersampleCount++ & decim_mask)) { Real avgr = (m_sum.real() / decim) * 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot Real avgi = (m_sum.imag() / decim) * 0.891235351562f * SDR_TX_SCALEF; if (!m_settings.m_dsb & !m_settings.m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(avgi, avgr)); } else { m_sampleBuffer.push_back(Sample(avgr, avgi)); } m_sum.real(0.0); m_sum.imag(0.0); } } } } // Real audio else if ((m_settings.m_modAFInput == SSBModSettings::SSBModInputTone) || (m_settings.m_modAFInput == SSBModSettings::SSBModInputCWTone)) // tone { m_sum += sample; if (!(m_undersampleCount++ & decim_mask)) { Real avgr = (m_sum.real() / decim) * 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot Real avgi = (m_sum.imag() / decim) * 0.891235351562f * SDR_TX_SCALEF; if (!m_settings.m_dsb & !m_settings.m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(avgi, avgr)); } else { m_sampleBuffer.push_back(Sample(avgr, avgi)); } m_sum.real(0.0); m_sum.imag(0.0); } if (m_sumCount < (m_settings.m_dsb ? m_ssbFftLen : m_ssbFftLen>>1)) { n_out = 0; m_sumCount++; } else { n_out = m_sumCount; m_sumCount = 0; } } if (n_out > 0) { if (m_sampleSink != 0) { m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_settings.m_dsb); } m_sampleBuffer.clear(); } } void SSBMod::calculateLevel(Complex& sample) { Real t = sample.real(); // TODO: possibly adjust depending on sample type if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), t); m_levelSum += t * t; m_levelCalcCount++; } else { qreal rmsLevel = sqrt(m_levelSum / m_levelNbSamples); //qDebug("NFMMod::calculateLevel: %f %f", rmsLevel, m_peakLevel); emit levelChanged(rmsLevel, m_peakLevel, m_levelNbSamples); m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void SSBMod::start() { qDebug() << "SSBMod::start: m_outputSampleRate: " << m_outputSampleRate << " m_inputFrequencyOffset: " << m_settings.m_inputFrequencyOffset; m_audioFifo.clear(); applyChannelSettings(m_basebandSampleRate, m_outputSampleRate, m_inputFrequencyOffset, true); } void SSBMod::stop() { } bool SSBMod::handleMessage(const Message& cmd) { if (UpChannelizer::MsgChannelizerNotification::match(cmd)) { UpChannelizer::MsgChannelizerNotification& notif = (UpChannelizer::MsgChannelizerNotification&) cmd; qDebug() << "SSBMod::handleMessage: MsgChannelizerNotification"; applyChannelSettings(notif.getBasebandSampleRate(), notif.getSampleRate(), notif.getFrequencyOffset()); return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; qDebug() << "SSBMod::handleMessage: MsgConfigureChannelizer: sampleRate: " << cfg.getSampleRate() << " centerFrequency: " << cfg.getCenterFrequency(); m_channelizer->configure(m_channelizer->getInputMessageQueue(), cfg.getSampleRate(), cfg.getCenterFrequency()); return true; } else if (MsgConfigureSSBMod::match(cmd)) { MsgConfigureSSBMod& cfg = (MsgConfigureSSBMod&) cmd; qDebug() << "SSBMod::handleMessage: MsgConfigureSSBMod"; applySettings(cfg.getSettings(), cfg.getForce()); return true; } else if (MsgConfigureFileSourceName::match(cmd)) { MsgConfigureFileSourceName& conf = (MsgConfigureFileSourceName&) cmd; m_fileName = conf.getFileName(); openFileStream(); return true; } else if (MsgConfigureFileSourceSeek::match(cmd)) { MsgConfigureFileSourceSeek& conf = (MsgConfigureFileSourceSeek&) cmd; int seekPercentage = conf.getPercentage(); seekFileStream(seekPercentage); return true; } else if (MsgConfigureFileSourceStreamTiming::match(cmd)) { std::size_t samplesCount; if (m_ifstream.eof()) { samplesCount = m_fileSize / sizeof(Real); } else { samplesCount = m_ifstream.tellg() / sizeof(Real); } if (getMessageQueueToGUI()) { MsgReportFileSourceStreamTiming *report; report = MsgReportFileSourceStreamTiming::create(samplesCount); getMessageQueueToGUI()->push(report); } return true; } else if (DSPConfigureAudio::match(cmd)) { DSPConfigureAudio& cfg = (DSPConfigureAudio&) cmd; uint32_t sampleRate = cfg.getSampleRate(); qDebug() << "SSBMod::handleMessage: DSPConfigureAudio:" << " sampleRate: " << sampleRate; if (sampleRate != m_audioSampleRate) { applyAudioSampleRate(sampleRate); } return true; } else if (DSPSignalNotification::match(cmd)) { return true; } else { return false; } } void SSBMod::openFileStream() { if (m_ifstream.is_open()) { m_ifstream.close(); } m_ifstream.open(m_fileName.toStdString().c_str(), std::ios::binary | std::ios::ate); m_fileSize = m_ifstream.tellg(); m_ifstream.seekg(0,std::ios_base::beg); m_sampleRate = 48000; // fixed rate m_recordLength = m_fileSize / (sizeof(Real) * m_sampleRate); qDebug() << "SSBMod::openFileStream: " << m_fileName.toStdString().c_str() << " fileSize: " << m_fileSize << "bytes" << " length: " << m_recordLength << " seconds"; if (getMessageQueueToGUI()) { MsgReportFileSourceStreamData *report; report = MsgReportFileSourceStreamData::create(m_sampleRate, m_recordLength); getMessageQueueToGUI()->push(report); } } void SSBMod::seekFileStream(int seekPercentage) { QMutexLocker mutexLocker(&m_settingsMutex); if (m_ifstream.is_open()) { int seekPoint = ((m_recordLength * seekPercentage) / 100) * m_sampleRate; seekPoint *= sizeof(Real); m_ifstream.clear(); m_ifstream.seekg(seekPoint, std::ios::beg); } } void SSBMod::applyAudioSampleRate(int sampleRate) { qDebug("SSBMod::applyAudioSampleRate: %d", sampleRate); MsgConfigureChannelizer* channelConfigMsg = MsgConfigureChannelizer::create( sampleRate, m_settings.m_inputFrequencyOffset); m_inputMessageQueue.push(channelConfigMsg); m_settingsMutex.lock(); m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) sampleRate / (Real) m_outputSampleRate; m_interpolator.create(48, sampleRate, m_settings.m_bandwidth, 3.0); float band = m_settings.m_bandwidth; float lowCutoff = m_settings.m_lowCutoff; bool usb = m_settings.m_usb; if (band < 0) // negative means LSB { band = -band; // turn to positive lowCutoff = -lowCutoff; usb = false; // and take note of side band } else { usb = true; } if (band < 100.0f) // at least 100 Hz { band = 100.0f; lowCutoff = 0; } if (band - lowCutoff < 100.0f) { lowCutoff = band - 100.0f; } m_SSBFilter->create_filter(lowCutoff / sampleRate, band / sampleRate); m_DSBFilter->create_dsb_filter((2.0f * band) / sampleRate); m_settings.m_bandwidth = band; m_settings.m_lowCutoff = lowCutoff; m_settings.m_usb = usb; m_toneNco.setFreq(m_settings.m_toneFrequency, sampleRate); m_cwKeyer.setSampleRate(sampleRate); m_agcStepLength = std::min(sampleRate/20, m_settings.m_agcTime/2); // 50 ms or half the AGC length whichever is smaller m_settingsMutex.unlock(); m_audioSampleRate = sampleRate; if (getMessageQueueToGUI()) { DSPConfigureAudio *cfg = new DSPConfigureAudio(m_audioSampleRate); getMessageQueueToGUI()->push(cfg); } } void SSBMod::applyChannelSettings(int basebandSampleRate, int outputSampleRate, int inputFrequencyOffset, bool force) { qDebug() << "SSBMod::applyChannelSettings:" << " basebandSampleRate: " << basebandSampleRate << " outputSampleRate: " << outputSampleRate << " inputFrequencyOffset: " << inputFrequencyOffset; if ((inputFrequencyOffset != m_inputFrequencyOffset) || (outputSampleRate != m_outputSampleRate) || force) { m_settingsMutex.lock(); m_carrierNco.setFreq(inputFrequencyOffset, outputSampleRate); m_settingsMutex.unlock(); } if ((outputSampleRate != m_outputSampleRate) || force) { m_settingsMutex.lock(); m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_audioSampleRate / (Real) outputSampleRate; m_interpolator.create(48, m_audioSampleRate, m_settings.m_bandwidth, 3.0); m_settingsMutex.unlock(); } m_basebandSampleRate = basebandSampleRate; m_outputSampleRate = outputSampleRate; m_inputFrequencyOffset = inputFrequencyOffset; } void SSBMod::applySettings(const SSBModSettings& settings, bool force) { float band = settings.m_bandwidth; float lowCutoff = settings.m_lowCutoff; bool usb = settings.m_usb; if ((settings.m_bandwidth != m_settings.m_bandwidth) || (settings.m_lowCutoff != m_settings.m_lowCutoff) || force) { if (band < 0) // negative means LSB { band = -band; // turn to positive lowCutoff = -lowCutoff; usb = false; // and take note of side band } else { usb = true; } if (band < 100.0f) // at least 100 Hz { band = 100.0f; lowCutoff = 0; } if (band - lowCutoff < 100.0f) { lowCutoff = band - 100.0f; } m_settingsMutex.lock(); m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_audioSampleRate / (Real) m_outputSampleRate; m_interpolator.create(48, m_audioSampleRate, band, 3.0); m_SSBFilter->create_filter(lowCutoff / m_audioSampleRate, band / m_audioSampleRate); m_DSBFilter->create_dsb_filter((2.0f * band) / m_audioSampleRate); m_settingsMutex.unlock(); } if ((settings.m_toneFrequency != m_settings.m_toneFrequency) || force) { m_settingsMutex.lock(); m_toneNco.setFreq(settings.m_toneFrequency, m_audioSampleRate); m_settingsMutex.unlock(); } if ((settings.m_dsb != m_settings.m_dsb) || force) { if (settings.m_dsb) { memset(m_DSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen)); m_DSBFilterBufferIndex = 0; } else { memset(m_SSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen>>1)); m_SSBFilterBufferIndex = 0; } } if ((settings.m_agcTime != m_settings.m_agcTime) || (settings.m_agcOrder != m_settings.m_agcOrder) || force) { m_settingsMutex.lock(); m_inAGC.resize(settings.m_agcTime, m_agcStepLength, settings.m_agcOrder); m_settingsMutex.unlock(); } if ((settings.m_agcThresholdEnable != m_settings.m_agcThresholdEnable) || force) { m_inAGC.setThresholdEnable(settings.m_agcThresholdEnable); } if ((settings.m_agcThreshold != m_settings.m_agcThreshold) || force) { m_inAGC.setThreshold(settings.m_agcThreshold); } if ((settings.m_agcThresholdGate != m_settings.m_agcThresholdGate) || force) { m_inAGC.setGate(settings.m_agcThresholdGate); } if ((settings.m_agcThresholdDelay != m_settings.m_agcThresholdDelay) || force) { m_inAGC.setStepDownDelay(settings.m_agcThresholdDelay); } if ((settings.m_audioDeviceName != m_settings.m_audioDeviceName) || force) { AudioDeviceManager *audioDeviceManager = DSPEngine::instance()->getAudioDeviceManager(); int audioDeviceIndex = audioDeviceManager->getInputDeviceIndex(settings.m_audioDeviceName); audioDeviceManager->addAudioSource(&m_audioFifo, getInputMessageQueue(), audioDeviceIndex); uint32_t audioSampleRate = audioDeviceManager->getInputSampleRate(audioDeviceIndex); if (m_audioSampleRate != audioSampleRate) { applyAudioSampleRate(audioSampleRate); } } m_settings = settings; m_settings.m_bandwidth = band; m_settings.m_lowCutoff = lowCutoff; m_settings.m_usb = usb; } QByteArray SSBMod::serialize() const { return m_settings.serialize(); } bool SSBMod::deserialize(const QByteArray& data) { if (m_settings.deserialize(data)) { MsgConfigureSSBMod *msg = MsgConfigureSSBMod::create(m_settings, true); m_inputMessageQueue.push(msg); return true; } else { m_settings.resetToDefaults(); MsgConfigureSSBMod *msg = MsgConfigureSSBMod::create(m_settings, true); m_inputMessageQueue.push(msg); return false; } } int SSBMod::webapiSettingsGet( SWGSDRangel::SWGChannelSettings& response, QString& errorMessage __attribute__((unused))) { response.setSsbModSettings(new SWGSDRangel::SWGSSBModSettings()); response.getSsbModSettings()->init(); webapiFormatChannelSettings(response, m_settings); return 200; } int SSBMod::webapiSettingsPutPatch( bool force, const QStringList& channelSettingsKeys, SWGSDRangel::SWGChannelSettings& response, QString& errorMessage __attribute__((unused))) { SSBModSettings settings = m_settings; bool frequencyOffsetChanged = false; if (channelSettingsKeys.contains("inputFrequencyOffset")) { settings.m_inputFrequencyOffset = response.getSsbModSettings()->getInputFrequencyOffset(); frequencyOffsetChanged = true; } if (channelSettingsKeys.contains("bandwidth")) { settings.m_bandwidth = response.getSsbModSettings()->getBandwidth(); } if (channelSettingsKeys.contains("lowCutoff")) { settings.m_lowCutoff = response.getSsbModSettings()->getLowCutoff(); } if (channelSettingsKeys.contains("usb")) { settings.m_usb = response.getSsbModSettings()->getUsb() != 0; } if (channelSettingsKeys.contains("toneFrequency")) { settings.m_toneFrequency = response.getSsbModSettings()->getToneFrequency(); } if (channelSettingsKeys.contains("volumeFactor")) { settings.m_volumeFactor = response.getSsbModSettings()->getVolumeFactor(); } if (channelSettingsKeys.contains("spanLog2")) { settings.m_spanLog2 = response.getSsbModSettings()->getSpanLog2(); } if (channelSettingsKeys.contains("audioBinaural")) { settings.m_audioBinaural = response.getSsbModSettings()->getAudioBinaural() != 0; } if (channelSettingsKeys.contains("audioFlipChannels")) { settings.m_audioFlipChannels = response.getSsbModSettings()->getAudioFlipChannels() != 0; } if (channelSettingsKeys.contains("dsb")) { settings.m_dsb = response.getSsbModSettings()->getDsb() != 0; } if (channelSettingsKeys.contains("audioMute")) { settings.m_audioMute = response.getSsbModSettings()->getAudioMute() != 0; } if (channelSettingsKeys.contains("playLoop")) { settings.m_playLoop = response.getSsbModSettings()->getPlayLoop() != 0; } if (channelSettingsKeys.contains("agc")) { settings.m_agc = response.getSsbModSettings()->getAgc() != 0; } if (channelSettingsKeys.contains("agcOrder")) { settings.m_agcOrder = response.getSsbModSettings()->getAgcOrder(); } if (channelSettingsKeys.contains("agcTime")) { settings.m_agcTime = response.getSsbModSettings()->getAgcTime(); } if (channelSettingsKeys.contains("agcThresholdEnable")) { settings.m_agcThresholdEnable = response.getSsbModSettings()->getAgcThresholdEnable() != 0; } if (channelSettingsKeys.contains("agcThreshold")) { settings.m_agcThreshold = response.getSsbModSettings()->getAgcThreshold(); } if (channelSettingsKeys.contains("agcThresholdGate")) { settings.m_agcThresholdGate = response.getSsbModSettings()->getAgcThresholdGate(); } if (channelSettingsKeys.contains("agcThresholdDelay")) { settings.m_agcThresholdDelay = response.getSsbModSettings()->getAgcThresholdDelay(); } if (channelSettingsKeys.contains("rgbColor")) { settings.m_rgbColor = response.getSsbModSettings()->getRgbColor(); } if (channelSettingsKeys.contains("title")) { settings.m_title = *response.getSsbModSettings()->getTitle(); } if (channelSettingsKeys.contains("modAFInput")) { settings.m_modAFInput = (SSBModSettings::SSBModInputAF) response.getSsbModSettings()->getModAfInput(); } if (channelSettingsKeys.contains("audioDeviceName")) { settings.m_audioDeviceName = *response.getSsbModSettings()->getAudioDeviceName(); } if (channelSettingsKeys.contains("cwKeyer")) { SWGSDRangel::SWGCWKeyerSettings *apiCwKeyerSettings = response.getSsbModSettings()->getCwKeyer(); CWKeyerSettings cwKeyerSettings = m_cwKeyer.getSettings(); if (channelSettingsKeys.contains("cwKeyer.loop")) { cwKeyerSettings.m_loop = apiCwKeyerSettings->getLoop() != 0; } if (channelSettingsKeys.contains("cwKeyer.mode")) { cwKeyerSettings.m_mode = (CWKeyerSettings::CWMode) apiCwKeyerSettings->getMode(); } if (channelSettingsKeys.contains("cwKeyer.text")) { cwKeyerSettings.m_text = *apiCwKeyerSettings->getText(); } if (channelSettingsKeys.contains("cwKeyer.sampleRate")) { cwKeyerSettings.m_sampleRate = apiCwKeyerSettings->getSampleRate(); } if (channelSettingsKeys.contains("cwKeyer.wpm")) { cwKeyerSettings.m_wpm = apiCwKeyerSettings->getWpm(); } m_cwKeyer.setLoop(cwKeyerSettings.m_loop); m_cwKeyer.setMode(cwKeyerSettings.m_mode); m_cwKeyer.setSampleRate(cwKeyerSettings.m_sampleRate); m_cwKeyer.setText(cwKeyerSettings.m_text); m_cwKeyer.setWPM(cwKeyerSettings.m_wpm); if (m_guiMessageQueue) // forward to GUI if any { CWKeyer::MsgConfigureCWKeyer *msgCwKeyer = CWKeyer::MsgConfigureCWKeyer::create(cwKeyerSettings, force); m_guiMessageQueue->push(msgCwKeyer); } } if (frequencyOffsetChanged) { SSBMod::MsgConfigureChannelizer *msgChan = SSBMod::MsgConfigureChannelizer::create( m_audioSampleRate, settings.m_inputFrequencyOffset); m_inputMessageQueue.push(msgChan); } MsgConfigureSSBMod *msg = MsgConfigureSSBMod::create(settings, force); m_inputMessageQueue.push(msg); if (m_guiMessageQueue) // forward to GUI if any { MsgConfigureSSBMod *msgToGUI = MsgConfigureSSBMod::create(settings, force); m_guiMessageQueue->push(msgToGUI); } webapiFormatChannelSettings(response, settings); return 200; } int SSBMod::webapiReportGet( SWGSDRangel::SWGChannelReport& response, QString& errorMessage __attribute__((unused))) { response.setSsbModReport(new SWGSDRangel::SWGSSBModReport()); response.getSsbModReport()->init(); webapiFormatChannelReport(response); return 200; } void SSBMod::webapiFormatChannelSettings(SWGSDRangel::SWGChannelSettings& response, const SSBModSettings& settings) { response.getSsbModSettings()->setInputFrequencyOffset(settings.m_inputFrequencyOffset); response.getSsbModSettings()->setBandwidth(settings.m_bandwidth); response.getSsbModSettings()->setLowCutoff(settings.m_lowCutoff); response.getSsbModSettings()->setUsb(settings.m_usb ? 1 : 0); response.getSsbModSettings()->setToneFrequency(settings.m_toneFrequency); response.getSsbModSettings()->setVolumeFactor(settings.m_volumeFactor); response.getSsbModSettings()->setSpanLog2(settings.m_spanLog2); response.getSsbModSettings()->setAudioBinaural(settings.m_audioBinaural ? 1 : 0); response.getSsbModSettings()->setAudioFlipChannels(settings.m_audioFlipChannels ? 1 : 0); response.getSsbModSettings()->setDsb(settings.m_dsb ? 1 : 0); response.getSsbModSettings()->setAudioMute(settings.m_audioMute ? 1 : 0); response.getSsbModSettings()->setPlayLoop(settings.m_playLoop ? 1 : 0); response.getSsbModSettings()->setAgc(settings.m_agc ? 1 : 0); response.getSsbModSettings()->setAgcOrder(settings.m_agcOrder); response.getSsbModSettings()->setAgcTime(settings.m_agcTime); response.getSsbModSettings()->setAgcThresholdEnable(settings.m_agcThresholdEnable ? 1 : 0); response.getSsbModSettings()->setAgcThreshold(settings.m_agcThreshold); response.getSsbModSettings()->setAgcThresholdGate(settings.m_agcThresholdGate); response.getSsbModSettings()->setAgcThresholdDelay(settings.m_agcThresholdDelay); response.getSsbModSettings()->setRgbColor(settings.m_rgbColor); if (response.getSsbModSettings()->getTitle()) { *response.getSsbModSettings()->getTitle() = settings.m_title; } else { response.getSsbModSettings()->setTitle(new QString(settings.m_title)); } response.getSsbModSettings()->setModAfInput((int) settings.m_modAFInput); if (response.getSsbModSettings()->getAudioDeviceName()) { *response.getSsbModSettings()->getAudioDeviceName() = settings.m_audioDeviceName; } else { response.getSsbModSettings()->setAudioDeviceName(new QString(settings.m_audioDeviceName)); } if (!response.getSsbModSettings()->getCwKeyer()) { response.getSsbModSettings()->setCwKeyer(new SWGSDRangel::SWGCWKeyerSettings); } SWGSDRangel::SWGCWKeyerSettings *apiCwKeyerSettings = response.getSsbModSettings()->getCwKeyer(); const CWKeyerSettings& cwKeyerSettings = m_cwKeyer.getSettings(); apiCwKeyerSettings->setLoop(cwKeyerSettings.m_loop ? 1 : 0); apiCwKeyerSettings->setMode((int) cwKeyerSettings.m_mode); apiCwKeyerSettings->setSampleRate(cwKeyerSettings.m_sampleRate); if (apiCwKeyerSettings->getText()) { *apiCwKeyerSettings->getText() = cwKeyerSettings.m_text; } else { apiCwKeyerSettings->setText(new QString(cwKeyerSettings.m_text)); } apiCwKeyerSettings->setWpm(cwKeyerSettings.m_wpm); } void SSBMod::webapiFormatChannelReport(SWGSDRangel::SWGChannelReport& response) { response.getSsbModReport()->setChannelPowerDb(CalcDb::dbPower(getMagSq())); response.getSsbModReport()->setAudioSampleRate(m_audioSampleRate); response.getSsbModReport()->setChannelSampleRate(m_outputSampleRate); }