/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2018-2020 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "dsp/samplesinkfifo.h" #include "bladerf2inputthread.h" BladeRF2InputThread::BladeRF2InputThread(struct bladerf* dev, unsigned int nbRxChannels, QObject* parent) : QThread(parent), m_running(false), m_dev(dev), m_nbChannels(nbRxChannels), m_iqOrder(true) { qDebug("BladeRF2InputThread::BladeRF2InputThread"); m_channels = new Channel[nbRxChannels]; for (unsigned int i = 0; i < nbRxChannels; i++) { m_channels[i].m_convertBuffer.resize(DeviceBladeRF2::blockSize, Sample{0,0}); } m_buf = new qint16[2*DeviceBladeRF2::blockSize*nbRxChannels]; } BladeRF2InputThread::~BladeRF2InputThread() { qDebug("BladeRF2InputThread::~BladeRF2InputThread"); if (m_running) { stopWork(); } delete[] m_buf; delete[] m_channels; } void BladeRF2InputThread::startWork() { m_startWaitMutex.lock(); start(); while(!m_running) { m_startWaiter.wait(&m_startWaitMutex, 100); } m_startWaitMutex.unlock(); } void BladeRF2InputThread::stopWork() { m_running = false; wait(); } void BladeRF2InputThread::run() { int res; m_running = true; m_startWaiter.wakeAll(); unsigned int nbFifos = getNbFifos(); if ((m_nbChannels > 0) && (nbFifos > 0)) { int status; if (m_nbChannels > 1) { status = bladerf_sync_config(m_dev, BLADERF_RX_X2, BLADERF_FORMAT_SC16_Q11, 64, 8192, 32, 10000); } else { status = bladerf_sync_config(m_dev, BLADERF_RX_X1, BLADERF_FORMAT_SC16_Q11, 64, 8192, 32, 10000); } if (status < 0) { qCritical("BladeRF2InputThread::run: cannot configure streams: %s", bladerf_strerror(status)); } else { qDebug("BladeRF2InputThread::run: start running loop"); while (m_running) { if (m_nbChannels > 1) { res = bladerf_sync_rx(m_dev, m_buf, DeviceBladeRF2::blockSize*m_nbChannels, NULL, 10000); } else { res = bladerf_sync_rx(m_dev, m_buf, DeviceBladeRF2::blockSize, NULL, 10000); } if (res < 0) { qCritical("BladeRF2InputThread::run sync Rx error: %s", bladerf_strerror(res)); break; } if (m_nbChannels > 1) { callbackMI(m_buf, DeviceBladeRF2::blockSize); } else { if (m_iqOrder) { callbackSIIQ(m_buf, 2*DeviceBladeRF2::blockSize); } else { callbackSIQI(m_buf, 2*DeviceBladeRF2::blockSize); } } } qDebug("BladeRF2InputThread::run: stop running loop"); } } else { qWarning("BladeRF2InputThread::run: no channels or FIFO allocated. Aborting"); } m_running = false; } unsigned int BladeRF2InputThread::getNbFifos() { unsigned int fifoCount = 0; for (unsigned int i = 0; i < m_nbChannels; i++) { if (m_channels[i].m_sampleFifo) { fifoCount++; } } return fifoCount; } void BladeRF2InputThread::setLog2Decimation(unsigned int channel, unsigned int log2_decim) { if (channel < m_nbChannels) { m_channels[channel].m_log2Decim = log2_decim; } } unsigned int BladeRF2InputThread::getLog2Decimation(unsigned int channel) const { if (channel < m_nbChannels) { return m_channels[channel].m_log2Decim; } else { return 0; } } void BladeRF2InputThread::setFcPos(unsigned int channel, int fcPos) { if (channel < m_nbChannels) { m_channels[channel].m_fcPos = fcPos; } } int BladeRF2InputThread::getFcPos(unsigned int channel) const { if (channel < m_nbChannels) { return m_channels[channel].m_fcPos; } else { return 0; } } void BladeRF2InputThread::setFifo(unsigned int channel, SampleSinkFifo *sampleFifo) { if (channel < m_nbChannels) { m_channels[channel].m_sampleFifo = sampleFifo; } } SampleSinkFifo *BladeRF2InputThread::getFifo(unsigned int channel) { if (channel < m_nbChannels) { return m_channels[channel].m_sampleFifo; } else { return 0; } } void BladeRF2InputThread::callbackMI(const qint16* buf, qint32 samplesPerChannel) { // TODO: write a set of decimators that can take interleaved samples in input directly int status = bladerf_deinterleave_stream_buffer(BLADERF_RX_X2, BLADERF_FORMAT_SC16_Q11 , samplesPerChannel*m_nbChannels, (void *) buf); if (status < 0) { qCritical("BladeRF2InputThread::callbackMI: cannot de-interleave buffer: %s", bladerf_strerror(status)); return; } for (unsigned int channel = 0; channel < m_nbChannels; channel++) { if (m_channels[channel].m_sampleFifo) { if (m_iqOrder) { callbackSIIQ(&buf[2*samplesPerChannel*channel], 2*samplesPerChannel, channel); } else { callbackSIQI(&buf[2*samplesPerChannel*channel], 2*samplesPerChannel, channel); } } } } void BladeRF2InputThread::callbackSIIQ(const qint16* buf, qint32 len, unsigned int channel) { SampleVector::iterator it = m_channels[channel].m_convertBuffer.begin(); if (m_channels[channel].m_log2Decim == 0) { m_channels[channel].m_decimatorsIQ.decimate1(&it, buf, len); } else { if (m_channels[channel].m_fcPos == 0) // Infra { switch (m_channels[channel].m_log2Decim) { case 1: m_channels[channel].m_decimatorsIQ.decimate2_inf(&it, buf, len); break; case 2: m_channels[channel].m_decimatorsIQ.decimate4_inf(&it, buf, len); break; case 3: m_channels[channel].m_decimatorsIQ.decimate8_inf(&it, buf, len); break; case 4: m_channels[channel].m_decimatorsIQ.decimate16_inf(&it, buf, len); break; case 5: m_channels[channel].m_decimatorsIQ.decimate32_inf(&it, buf, len); break; case 6: m_channels[channel].m_decimatorsIQ.decimate64_inf(&it, buf, len); break; default: break; } } else if (m_channels[channel].m_fcPos == 1) // Supra { switch (m_channels[channel].m_log2Decim) { case 1: m_channels[channel].m_decimatorsIQ.decimate2_sup(&it, buf, len); break; case 2: m_channels[channel].m_decimatorsIQ.decimate4_sup(&it, buf, len); break; case 3: m_channels[channel].m_decimatorsIQ.decimate8_sup(&it, buf, len); break; case 4: m_channels[channel].m_decimatorsIQ.decimate16_sup(&it, buf, len); break; case 5: m_channels[channel].m_decimatorsIQ.decimate32_sup(&it, buf, len); break; case 6: m_channels[channel].m_decimatorsIQ.decimate64_sup(&it, buf, len); break; default: break; } } else if (m_channels[channel].m_fcPos == 2) // Center { switch (m_channels[channel].m_log2Decim) { case 1: m_channels[channel].m_decimatorsIQ.decimate2_cen(&it, buf, len); break; case 2: m_channels[channel].m_decimatorsIQ.decimate4_cen(&it, buf, len); break; case 3: m_channels[channel].m_decimatorsIQ.decimate8_cen(&it, buf, len); break; case 4: m_channels[channel].m_decimatorsIQ.decimate16_cen(&it, buf, len); break; case 5: m_channels[channel].m_decimatorsIQ.decimate32_cen(&it, buf, len); break; case 6: m_channels[channel].m_decimatorsIQ.decimate64_cen(&it, buf, len); break; default: break; } } } m_channels[channel].m_sampleFifo->write(m_channels[channel].m_convertBuffer.begin(), it); } void BladeRF2InputThread::callbackSIQI(const qint16* buf, qint32 len, unsigned int channel) { SampleVector::iterator it = m_channels[channel].m_convertBuffer.begin(); if (m_channels[channel].m_log2Decim == 0) { m_channels[channel].m_decimatorsQI.decimate1(&it, buf, len); } else { if (m_channels[channel].m_fcPos == 0) // Infra { switch (m_channels[channel].m_log2Decim) { case 1: m_channels[channel].m_decimatorsQI.decimate2_inf(&it, buf, len); break; case 2: m_channels[channel].m_decimatorsQI.decimate4_inf(&it, buf, len); break; case 3: m_channels[channel].m_decimatorsQI.decimate8_inf(&it, buf, len); break; case 4: m_channels[channel].m_decimatorsQI.decimate16_inf(&it, buf, len); break; case 5: m_channels[channel].m_decimatorsQI.decimate32_inf(&it, buf, len); break; case 6: m_channels[channel].m_decimatorsQI.decimate64_inf(&it, buf, len); break; default: break; } } else if (m_channels[channel].m_fcPos == 1) // Supra { switch (m_channels[channel].m_log2Decim) { case 1: m_channels[channel].m_decimatorsQI.decimate2_sup(&it, buf, len); break; case 2: m_channels[channel].m_decimatorsQI.decimate4_sup(&it, buf, len); break; case 3: m_channels[channel].m_decimatorsQI.decimate8_sup(&it, buf, len); break; case 4: m_channels[channel].m_decimatorsQI.decimate16_sup(&it, buf, len); break; case 5: m_channels[channel].m_decimatorsQI.decimate32_sup(&it, buf, len); break; case 6: m_channels[channel].m_decimatorsQI.decimate64_sup(&it, buf, len); break; default: break; } } else if (m_channels[channel].m_fcPos == 2) // Center { switch (m_channels[channel].m_log2Decim) { case 1: m_channels[channel].m_decimatorsQI.decimate2_cen(&it, buf, len); break; case 2: m_channels[channel].m_decimatorsQI.decimate4_cen(&it, buf, len); break; case 3: m_channels[channel].m_decimatorsQI.decimate8_cen(&it, buf, len); break; case 4: m_channels[channel].m_decimatorsQI.decimate16_cen(&it, buf, len); break; case 5: m_channels[channel].m_decimatorsQI.decimate32_cen(&it, buf, len); break; case 6: m_channels[channel].m_decimatorsQI.decimate64_cen(&it, buf, len); break; default: break; } } } m_channels[channel].m_sampleFifo->write(m_channels[channel].m_convertBuffer.begin(), it); }