/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015-2020 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "hackrfinputthread.h" #include #include #include #include "dsp/samplesinkfifo.h" HackRFInputThread::HackRFInputThread(hackrf_device* dev, SampleSinkFifo* sampleFifo, QObject* parent) : QThread(parent), m_running(false), m_dev(dev), m_convertBuffer(HACKRF_BLOCKSIZE), m_sampleFifo(sampleFifo), m_samplerate(10), m_log2Decim(0), m_fcPos(0), m_iqOrder(true) { std::fill(m_buf, m_buf + 2*HACKRF_BLOCKSIZE, 0); } HackRFInputThread::~HackRFInputThread() { stopWork(); } void HackRFInputThread::startWork() { m_startWaitMutex.lock(); start(); while(!m_running) m_startWaiter.wait(&m_startWaitMutex, 100); m_startWaitMutex.unlock(); } void HackRFInputThread::stopWork() { qDebug("HackRFThread::stopWork"); m_running = false; wait(); } void HackRFInputThread::setSamplerate(uint32_t samplerate) { m_samplerate = samplerate; } void HackRFInputThread::setLog2Decimation(unsigned int log2_decim) { m_log2Decim = log2_decim; } void HackRFInputThread::setFcPos(int fcPos) { m_fcPos = fcPos; } void HackRFInputThread::run() { hackrf_error rc; m_running = true; m_startWaiter.wakeAll(); if (hackrf_is_streaming(m_dev) == HACKRF_TRUE) { qDebug("HackRFInputThread::run: HackRF is streaming already"); } else { qDebug("HackRFInputThread::run: HackRF is not streaming"); rc = (hackrf_error) hackrf_start_rx(m_dev, rx_callback, this); if (rc == HACKRF_SUCCESS) { qDebug("HackRFInputThread::run: started HackRF Rx"); } else { qDebug("HackRFInputThread::run: failed to start HackRF Rx: %s", hackrf_error_name(rc)); } } while ((m_running) && (hackrf_is_streaming(m_dev) == HACKRF_TRUE)) { usleep(200000); } if (hackrf_is_streaming(m_dev) == HACKRF_TRUE) { rc = (hackrf_error) hackrf_stop_rx(m_dev); if (rc == HACKRF_SUCCESS) { qDebug("HackRFInputThread::run: stopped HackRF Rx"); } else { qDebug("HackRFInputThread::run: failed to stop HackRF Rx: %s", hackrf_error_name(rc)); } } m_running = false; } // Decimate according to specified log2 (ex: log2=4 => decim=16) void HackRFInputThread::callbackIQ(const qint8* buf, qint32 len) { SampleVector::iterator it = m_convertBuffer.begin(); if (m_log2Decim == 0) { m_decimatorsIQ.decimate1(&it, buf, len); } else { if (m_fcPos == 0) // Infra { switch (m_log2Decim) { case 1: m_decimatorsIQ.decimate2_inf(&it, buf, len); break; case 2: m_decimatorsIQ.decimate4_inf_txsync(&it, buf, len); break; case 3: m_decimatorsIQ.decimate8_inf_txsync(&it, buf, len); break; case 4: m_decimatorsIQ.decimate16_inf_txsync(&it, buf, len); break; case 5: m_decimatorsIQ.decimate32_inf_txsync(&it, buf, len); break; case 6: m_decimatorsIQ.decimate64_inf_txsync(&it, buf, len); break; default: break; } } else if (m_fcPos == 1) // Supra { switch (m_log2Decim) { case 1: m_decimatorsIQ.decimate2_sup(&it, buf, len); break; case 2: m_decimatorsIQ.decimate4_sup_txsync(&it, buf, len); break; case 3: m_decimatorsIQ.decimate8_sup_txsync(&it, buf, len); break; case 4: m_decimatorsIQ.decimate16_sup_txsync(&it, buf, len); break; case 5: m_decimatorsIQ.decimate32_sup_txsync(&it, buf, len); break; case 6: m_decimatorsIQ.decimate64_sup_txsync(&it, buf, len); break; default: break; } } else if (m_fcPos == 2) // Center { switch (m_log2Decim) { case 1: m_decimatorsIQ.decimate2_cen(&it, buf, len); break; case 2: m_decimatorsIQ.decimate4_cen(&it, buf, len); break; case 3: m_decimatorsIQ.decimate8_cen(&it, buf, len); break; case 4: m_decimatorsIQ.decimate16_cen(&it, buf, len); break; case 5: m_decimatorsIQ.decimate32_cen(&it, buf, len); break; case 6: m_decimatorsIQ.decimate64_cen(&it, buf, len); break; default: break; } } } m_sampleFifo->write(m_convertBuffer.begin(), it); } void HackRFInputThread::callbackQI(const qint8* buf, qint32 len) { SampleVector::iterator it = m_convertBuffer.begin(); if (m_log2Decim == 0) { m_decimatorsQI.decimate1(&it, buf, len); } else { if (m_fcPos == 0) // Infra { switch (m_log2Decim) { case 1: m_decimatorsQI.decimate2_inf(&it, buf, len); break; case 2: m_decimatorsQI.decimate4_inf_txsync(&it, buf, len); break; case 3: m_decimatorsQI.decimate8_inf_txsync(&it, buf, len); break; case 4: m_decimatorsQI.decimate16_inf_txsync(&it, buf, len); break; case 5: m_decimatorsQI.decimate32_inf_txsync(&it, buf, len); break; case 6: m_decimatorsQI.decimate64_inf_txsync(&it, buf, len); break; default: break; } } else if (m_fcPos == 1) // Supra { switch (m_log2Decim) { case 1: m_decimatorsQI.decimate2_sup(&it, buf, len); break; case 2: m_decimatorsQI.decimate4_sup_txsync(&it, buf, len); break; case 3: m_decimatorsQI.decimate8_sup_txsync(&it, buf, len); break; case 4: m_decimatorsQI.decimate16_sup_txsync(&it, buf, len); break; case 5: m_decimatorsQI.decimate32_sup_txsync(&it, buf, len); break; case 6: m_decimatorsQI.decimate64_sup_txsync(&it, buf, len); break; default: break; } } else if (m_fcPos == 2) // Center { switch (m_log2Decim) { case 1: m_decimatorsQI.decimate2_cen(&it, buf, len); break; case 2: m_decimatorsQI.decimate4_cen(&it, buf, len); break; case 3: m_decimatorsQI.decimate8_cen(&it, buf, len); break; case 4: m_decimatorsQI.decimate16_cen(&it, buf, len); break; case 5: m_decimatorsQI.decimate32_cen(&it, buf, len); break; case 6: m_decimatorsQI.decimate64_cen(&it, buf, len); break; default: break; } } } m_sampleFifo->write(m_convertBuffer.begin(), it); } int HackRFInputThread::rx_callback(hackrf_transfer* transfer) { HackRFInputThread *thread = (HackRFInputThread *) transfer->rx_ctx; qint32 bytes_to_write = transfer->valid_length; if (thread->m_iqOrder) { thread->callbackIQ((qint8 *) transfer->buffer, bytes_to_write); } else { thread->callbackQI((qint8 *) transfer->buffer, bytes_to_write); } return 0; }