/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019-2023 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "audio/audiooutputdevice.h" #include "dsp/dspengine.h" #include "dsp/dspcommands.h" #include "dsp/devicesamplemimo.h" #include "dsp/spectrumvis.h" #include "dsp/datafifo.h" #include "device/deviceapi.h" #include "util/db.h" #include "util/messagequeue.h" #include "maincore.h" #include "ssbdemodsink.h" const int SSBDemodSink::m_ssbFftLen = 2048; const int SSBDemodSink::m_agcTarget = 3276; // 32768/10 -10 dB amplitude => -20 dB power: center of normal signal SSBDemodSink::SSBDemodSink() : m_audioBinaual(false), m_audioFlipChannels(false), m_dsb(false), m_audioMute(false), m_agc(12000, m_agcTarget, 1e-2), m_agcActive(false), m_agcClamping(false), m_agcNbSamples(12000), m_agcPowerThreshold(1e-2), m_agcThresholdGate(0), m_squelchDelayLine(2*48000), m_audioActive(false), m_spectrumSink(nullptr), m_audioFifo(24000), m_audioSampleRate(48000) { m_Bandwidth = 5000; m_LowCutoff = 300; m_volume = 2.0; m_spanLog2 = 3; m_channelSampleRate = 48000; m_channelFrequencyOffset = 0; m_audioBuffer.resize(m_audioSampleRate / 10); m_audioBufferFill = 0; m_undersampleCount = 0; m_sum = 0; m_demodBuffer.resize(1<<12); m_demodBufferFill = 0; m_usb = true; m_magsq = 0.0; m_magsqSum = 0.0; m_magsqPeak = 0.0; m_magsqCount = 0; m_magsqCur = 0.0; m_magsqPrev = 0.0; m_agc.setClampMax(SDR_RX_SCALED/100.0); m_agc.setClamping(m_agcClamping); SSBFilter = new fftfilt(m_LowCutoff / m_audioSampleRate, m_Bandwidth / m_audioSampleRate, m_ssbFftLen); DSBFilter = new fftfilt((2.0f * m_Bandwidth) / m_audioSampleRate, 2 * m_ssbFftLen); m_lowpassI.create(101, m_audioSampleRate, m_Bandwidth * 1.2); m_lowpassQ.create(101, m_audioSampleRate, m_Bandwidth * 1.2); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); applySettings(m_settings, true); } SSBDemodSink::~SSBDemodSink() { delete SSBFilter; delete DSBFilter; } void SSBDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { if (m_channelSampleRate == 0) { return; } Complex ci; for(SampleVector::const_iterator it = begin; it < end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolatorDistance < 1.0f) // interpolate { while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } else { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } } } void SSBDemodSink::processOneSample(Complex &ci) { fftfilt::cmplx *sideband; int n_out = 0; int decim = 1<<(m_spanLog2 - 1); unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1) if (m_dsb) { n_out = DSBFilter->runDSB(ci, &sideband); } else { n_out = SSBFilter->runSSB(ci, &sideband, m_usb); } for (int i = 0; i < n_out; i++) { // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display // smart decimation with bit gain using float arithmetic (23 bits significand) m_sum += sideband[i]; if (!(m_undersampleCount++ & decim_mask)) { Real avgr = m_sum.real() / decim; Real avgi = m_sum.imag() / decim; m_magsq = (avgr * avgr + avgi * avgi) / (SDR_RX_SCALED*SDR_RX_SCALED); m_magsqSum += m_magsq; if (m_magsq > m_magsqPeak) { m_magsqPeak = m_magsq; } m_magsqCount++; if (!m_dsb & !m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(avgi, avgr)); } else { m_sampleBuffer.push_back(Sample(avgr, avgi)); } m_sum.real(0.0); m_sum.imag(0.0); } float agcVal = m_agcActive ? m_agc.feedAndGetValue(sideband[i]) : 1.0; fftfilt::cmplx& delayedSample = m_squelchDelayLine.readBack(m_agc.getStepDownDelay()); m_audioActive = delayedSample.real() != 0.0; m_magsqCur = std::norm(sideband[i]*agcVal); // Prevent overload based on squared magnitude variation // Only if AGC is active if (m_agcActive && m_agcClamping && (std::abs(m_magsqCur - m_magsqPrev) > m_agcTarget*m_agcTarget*5.0) & (agcVal > 100.0)) { float target = m_agcTarget*sqrt(agcVal); // Quench AGC depending on previous value m_agc.reset(target); m_squelchDelayLine.write(fftfilt::cmplx{target, 0.0}); m_magsqCur = target*target; } else { m_squelchDelayLine.write(sideband[i]*agcVal); } m_magsqPrev = m_magsqCur; if (m_audioMute) { m_audioBuffer[m_audioBufferFill].r = 0; m_audioBuffer[m_audioBufferFill].l = 0; } else { // fftfilt::cmplx z = m_agcActive ? delayedSample * m_agc.getStepValue() : delayedSample; fftfilt::cmplx z = (m_agcActive && m_agcClamping) ? fftfilt::cmplx{m_lowpassI.filter(delayedSample.real()), m_lowpassQ.filter(delayedSample.imag())} : delayedSample; if (m_audioBinaual) { if (m_audioFlipChannels) { m_audioBuffer[m_audioBufferFill].r = (qint16)(z.imag() * m_volume); m_audioBuffer[m_audioBufferFill].l = (qint16)(z.real() * m_volume); } else { m_audioBuffer[m_audioBufferFill].r = (qint16)(z.real() * m_volume); m_audioBuffer[m_audioBufferFill].l = (qint16)(z.imag() * m_volume); } m_demodBuffer[m_demodBufferFill++] = z.real(); m_demodBuffer[m_demodBufferFill++] = z.imag(); } else { Real demod = (z.real() + z.imag()) * 0.7; qint16 sample = (qint16)(demod * m_volume); m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; m_demodBuffer[m_demodBufferFill++] = (z.real() + z.imag()) * 0.7; } if (m_demodBufferFill >= m_demodBuffer.size()) { QList dataPipes; MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes); if (dataPipes.size() > 0) { QList::iterator it = dataPipes.begin(); for (; it != dataPipes.end(); ++it) { DataFifo *fifo = qobject_cast((*it)->m_element); if (fifo) { fifo->write( (quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16), m_audioBinaual ? DataFifo::DataTypeCI16 : DataFifo::DataTypeI16 ); } } } m_demodBufferFill = 0; } } ++m_audioBufferFill; if (m_audioBufferFill >= m_audioBuffer.size()) { std::size_t res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], std::min(m_audioBufferFill, m_audioBuffer.size())); if (res != m_audioBufferFill) { qDebug("SSBDemodSink::processOneSample: %lu/%lu samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } } if (m_spectrumSink && (m_sampleBuffer.size() != 0)) { m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_dsb); m_sampleBuffer.clear(); } } void SSBDemodSink::setDNR(bool dnr) { SSBFilter->setDNR(dnr); } void SSBDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "SSBDemodSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((m_channelFrequencyOffset != channelFrequencyOffset) || (m_channelSampleRate != channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((m_channelSampleRate != channelSampleRate) || force) { Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > channelSampleRate ? channelSampleRate : (m_Bandwidth * 1.5f); m_interpolator.create(16, channelSampleRate, interpolatorBandwidth, 2.0f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) channelSampleRate / (Real) m_audioSampleRate; } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void SSBDemodSink::applyAudioSampleRate(int sampleRate) { qDebug("SSBDemodSink::applyAudioSampleRate: %d", sampleRate); Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f); m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_channelSampleRate / (Real) sampleRate; SSBFilter->create_filter(m_LowCutoff / (float) sampleRate, m_Bandwidth / (float) sampleRate, m_settings.m_filterBank[m_settings.m_filterIndex].m_fftWindow); DSBFilter->create_dsb_filter(m_Bandwidth / (float) sampleRate, m_settings.m_filterBank[m_settings.m_filterIndex].m_fftWindow); m_lowpassI.create(101, sampleRate, m_Bandwidth * 1.2); m_lowpassQ.create(101, sampleRate, m_Bandwidth * 1.2); int agcNbSamples = (sampleRate / 1000) * (1< pipes; MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes); if (pipes.size() > 0) { for (const auto& pipe : pipes) { MessageQueue* messageQueue = qobject_cast(pipe->m_element); if (messageQueue) { MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate); messageQueue->push(msg); } } } } void SSBDemodSink::applySettings(const SSBDemodSettings& settings, bool force) { qDebug() << "SSBDemodSink::applySettings:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_filterIndex: " << settings.m_filterIndex << " [m_spanLog2: " << settings.m_filterBank[settings.m_filterIndex].m_spanLog2 << " m_rfBandwidth: " << settings.m_filterBank[settings.m_filterIndex].m_rfBandwidth << " m_lowCutoff: " << settings.m_filterBank[settings.m_filterIndex].m_lowCutoff << " m_fftWindow: " << settings.m_filterBank[settings.m_filterIndex].m_fftWindow << "]" << " m_volume: " << settings.m_volume << " m_audioBinaual: " << settings.m_audioBinaural << " m_audioFlipChannels: " << settings.m_audioFlipChannels << " m_dsb: " << settings.m_dsb << " m_audioMute: " << settings.m_audioMute << " m_agcActive: " << settings.m_agc << " m_agcClamping: " << settings.m_agcClamping << " m_agcTimeLog2: " << settings.m_agcTimeLog2 << " agcPowerThreshold: " << settings.m_agcPowerThreshold << " agcThresholdGate: " << settings.m_agcThresholdGate << " m_dnr: " << settings.m_dnr << " m_dnrScheme: " << settings.m_dnrScheme << " m_dnrAboveAvgFactor: " << settings.m_dnrAboveAvgFactor << " m_dnrSigmaFactor: " << settings.m_dnrSigmaFactor << " m_dnrNbPeaks: " << settings.m_dnrNbPeaks << " m_dnrAlpha: " << settings.m_dnrAlpha << " m_audioDeviceName: " << settings.m_audioDeviceName << " m_streamIndex: " << settings.m_streamIndex << " m_useReverseAPI: " << settings.m_useReverseAPI << " m_reverseAPIAddress: " << settings.m_reverseAPIAddress << " m_reverseAPIPort: " << settings.m_reverseAPIPort << " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex << " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex << " force: " << force; if((m_settings.m_filterBank[m_settings.m_filterIndex].m_rfBandwidth != settings.m_filterBank[settings.m_filterIndex].m_rfBandwidth) || (m_settings.m_filterBank[m_settings.m_filterIndex].m_lowCutoff != settings.m_filterBank[settings.m_filterIndex].m_lowCutoff) || (m_settings.m_filterBank[m_settings.m_filterIndex].m_fftWindow != settings.m_filterBank[settings.m_filterIndex].m_fftWindow) || force) { float band, lowCutoff; band = settings.m_filterBank[settings.m_filterIndex].m_rfBandwidth; lowCutoff = settings.m_filterBank[settings.m_filterIndex].m_lowCutoff; if (band < 0) { band = -band; lowCutoff = -lowCutoff; m_usb = false; } else { m_usb = true; } if (band < 100.0f) { band = 100.0f; lowCutoff = 0; } m_Bandwidth = band; m_LowCutoff = lowCutoff; Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f); m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_audioSampleRate; SSBFilter->create_filter(m_LowCutoff / (float) m_audioSampleRate, m_Bandwidth / (float) m_audioSampleRate, settings.m_filterBank[settings.m_filterIndex].m_fftWindow); DSBFilter->create_dsb_filter(m_Bandwidth / (float) m_audioSampleRate, settings.m_filterBank[settings.m_filterIndex].m_fftWindow); m_lowpassI.create(101, m_audioSampleRate, m_Bandwidth * 1.2); m_lowpassQ.create(101, m_audioSampleRate, m_Bandwidth * 1.2); } if ((m_settings.m_volume != settings.m_volume) || force) { m_volume = settings.m_volume; m_volume /= 4.0; // for 3276.8 } if ((m_settings.m_agcTimeLog2 != settings.m_agcTimeLog2) || (m_settings.m_agcPowerThreshold != settings.m_agcPowerThreshold) || (m_settings.m_agcThresholdGate != settings.m_agcThresholdGate) || (m_settings.m_agcClamping != settings.m_agcClamping) || force) { int agcNbSamples = (m_audioSampleRate / 1000) * (1<setDNRScheme((FFTNoiseReduction::Scheme) settings.m_dnrScheme); } if ((m_settings.m_dnrAboveAvgFactor != settings.m_dnrAboveAvgFactor) || force) { SSBFilter->setDNRAboveAvgFactor(settings.m_dnrAboveAvgFactor); } if ((m_settings.m_dnrSigmaFactor != settings.m_dnrSigmaFactor) || force) { SSBFilter->setDNRSigmaFactor(settings.m_dnrSigmaFactor); } if ((m_settings.m_dnrNbPeaks != settings.m_dnrNbPeaks) || force) { SSBFilter->setDNRNbPeaks(settings.m_dnrNbPeaks); } if ((m_settings.m_dnrAlpha != settings.m_dnrAlpha) || force) { SSBFilter->setDNRAlpha(settings.m_dnrAlpha); } m_spanLog2 = settings.m_filterBank[settings.m_filterIndex].m_spanLog2; m_audioBinaual = settings.m_audioBinaural; m_audioFlipChannels = settings.m_audioFlipChannels; m_dsb = settings.m_dsb; m_audioMute = settings.m_audioMute; m_agcActive = settings.m_agc; m_settings = settings; }