///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see . //
///////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
#include
#include "udpsinkfec.h"
MESSAGE_CLASS_DEFINITION(UDPSinkFECWorker::MsgUDPFECEncodeAndSend, Message)
MESSAGE_CLASS_DEFINITION(UDPSinkFECWorker::MsgConfigureRemoteAddress, Message)
UDPSinkFEC::UDPSinkFEC() :
m_centerFrequency(100000),
m_sampleRate(48000),
m_sampleBytes(1),
m_sampleBits(8),
m_nbSamples(0),
m_nbBlocksFEC(0),
m_txDelay(0),
m_txBlockIndex(0),
m_txBlocksIndex(0),
m_frameCount(0),
m_sampleIndex(0)
{
memset((char *) m_txBlocks, 0, 4*256*sizeof(SuperBlock));
memset((char *) &m_superBlock, 0, sizeof(SuperBlock));
m_currentMetaFEC.init();
m_bufMeta = new uint8_t[m_udpSize];
m_buf = new uint8_t[m_udpSize];
m_udpThread = new QThread();
m_udpWorker = new UDPSinkFECWorker();
m_udpWorker->moveToThread(m_udpThread);
connect(m_udpThread, SIGNAL(started()), m_udpWorker, SLOT(process()));
connect(m_udpWorker, SIGNAL(finished()), m_udpThread, SLOT(quit()));
m_udpThread->start();
}
UDPSinkFEC::~UDPSinkFEC()
{
m_udpWorker->stop();
m_udpThread->wait();
delete[] m_buf;
delete[] m_bufMeta;
delete m_udpWorker;
delete m_udpThread;
}
void UDPSinkFEC::setTxDelay(uint32_t txDelay)
{
qDebug() << "UDPSinkFEC::setTxDelay: txDelay: " << txDelay;
m_txDelay = txDelay;
}
void UDPSinkFEC::setNbBlocksFEC(uint32_t nbBlocksFEC)
{
qDebug() << "UDPSinkFEC::setNbBlocksFEC: nbBlocksFEC: " << nbBlocksFEC;
m_nbBlocksFEC = nbBlocksFEC;
}
void UDPSinkFEC::setRemoteAddress(const QString& address, uint16_t port)
{
qDebug() << "UDPSinkFEC::setRemoteAddress: address: " << address << " port: " << port;
m_udpWorker->setRemoteAddress(address, port);
}
void UDPSinkFEC::write(const SampleVector::iterator& begin, uint32_t sampleChunkSize)
{
//qDebug("UDPSinkFEC::write(: %u samples", sampleChunkSize);
const SampleVector::iterator end = begin + sampleChunkSize;
SampleVector::iterator it = begin;
while (it != end)
{
int inRemainingSamples = end - it;
if (m_txBlockIndex == 0) // Tx block index 0 is a block with only meta data
{
struct timeval tv;
MetaDataFEC metaData;
gettimeofday(&tv, 0);
// create meta data TODO: semaphore
metaData.m_centerFrequency = m_centerFrequency;
metaData.m_sampleRate = m_sampleRate;
metaData.m_sampleBytes = m_sampleBytes;
metaData.m_sampleBits = m_sampleBits;
metaData.m_nbOriginalBlocks = m_nbOriginalBlocks;
metaData.m_nbFECBlocks = m_nbBlocksFEC;
metaData.m_tv_sec = tv.tv_sec;
metaData.m_tv_usec = tv.tv_usec;
boost::crc_32_type crc32;
crc32.process_bytes(&metaData, 20);
metaData.m_crc32 = crc32.checksum();
memset((char *) &m_superBlock, 0, sizeof(m_superBlock));
m_superBlock.header.frameIndex = m_frameCount;
m_superBlock.header.blockIndex = m_txBlockIndex;
memcpy((char *) &m_superBlock.protectedBlock, (const char *) &metaData, sizeof(MetaDataFEC));
if (!(metaData == m_currentMetaFEC))
{
qDebug() << "UDPSinkFEC::write: meta: "
<< "|" << metaData.m_centerFrequency
<< ":" << metaData.m_sampleRate
<< ":" << (int) (metaData.m_sampleBytes & 0xF)
<< ":" << (int) metaData.m_sampleBits
<< "|" << (int) metaData.m_nbOriginalBlocks
<< ":" << (int) metaData.m_nbFECBlocks
<< "|" << metaData.m_tv_sec
<< ":" << metaData.m_tv_usec
<< "|";
m_currentMetaFEC = metaData;
}
m_txBlocks[m_txBlocksIndex][0] = m_superBlock;
m_txBlockIndex = 1; // next Tx block with data
}
if (m_sampleIndex + inRemainingSamples < samplesPerBlock) // there is still room in the current super block
{
memcpy((char *) &m_superBlock.protectedBlock.m_samples[m_sampleIndex],
(const char *) &(*it),
inRemainingSamples * sizeof(Sample));
m_sampleIndex += inRemainingSamples;
it = end; // all input samples are consumed
}
else // complete super block and initiate the next if not end of frame
{
memcpy((char *) &m_superBlock.protectedBlock.m_samples[m_sampleIndex],
(const char *) &(*it),
(samplesPerBlock - m_sampleIndex) * sizeof(Sample));
it += samplesPerBlock - m_sampleIndex;
m_sampleIndex = 0;
m_superBlock.header.frameIndex = m_frameCount;
m_superBlock.header.blockIndex = m_txBlockIndex;
m_txBlocks[m_txBlocksIndex][m_txBlockIndex] = m_superBlock;
if (m_txBlockIndex == m_nbOriginalBlocks - 1) // frame complete
{
int nbBlocksFEC = m_nbBlocksFEC;
int txDelay = m_txDelay;
// TODO: send blocks
//qDebug("UDPSinkFEC::write: push frame to worker: %u", m_frameCount);
m_udpWorker->pushTxFrame(m_txBlocks[m_txBlocksIndex], nbBlocksFEC, txDelay, m_frameCount);
//m_txThread = new std::thread(transmitUDP, this, m_txBlocks[m_txBlocksIndex], m_frameCount, nbBlocksFEC, txDelay, m_cm256Valid);
//transmitUDP(this, m_txBlocks[m_txBlocksIndex], m_frameCount, m_nbBlocksFEC, m_txDelay, m_cm256Valid);
m_txBlocksIndex = (m_txBlocksIndex + 1) % 4;
m_txBlockIndex = 0;
m_frameCount++;
}
else
{
m_txBlockIndex++;
}
}
}
}
UDPSinkFECWorker::UDPSinkFECWorker() :
m_running(false),
m_remotePort(9090)
{
m_cm256Valid = m_cm256.isInitialized();
connect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()), Qt::DirectConnection);
}
UDPSinkFECWorker::~UDPSinkFECWorker()
{
disconnect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()));
m_inputMessageQueue.clear();
}
void UDPSinkFECWorker::pushTxFrame(UDPSinkFEC::SuperBlock *txBlocks,
uint32_t nbBlocksFEC,
uint32_t txDelay,
uint16_t frameIndex)
{
//qDebug("UDPSinkFECWorker::pushTxFrame. %d", m_inputMessageQueue.size());
m_inputMessageQueue.push(MsgUDPFECEncodeAndSend::create(txBlocks, nbBlocksFEC, txDelay, frameIndex));
}
void UDPSinkFECWorker::setRemoteAddress(const QString& address, uint16_t port)
{
m_inputMessageQueue.push(MsgConfigureRemoteAddress::create(address, port));
}
void UDPSinkFECWorker::process()
{
m_running = true;
qDebug("UDPSinkFECWorker::process: started");
while (m_running)
{
usleep(250000);
}
qDebug("UDPSinkFECWorker::process: stopped");
emit finished();
}
void UDPSinkFECWorker::stop()
{
m_running = false;
}
void UDPSinkFECWorker::handleInputMessages()
{
Message* message;
while ((message = m_inputMessageQueue.pop()) != 0)
{
if (MsgUDPFECEncodeAndSend::match(*message))
{
MsgUDPFECEncodeAndSend *sendMsg = (MsgUDPFECEncodeAndSend *) message;
encodeAndTransmit(sendMsg->getTxBlocks(), sendMsg->getFrameIndex(), sendMsg->getNbBlocsFEC(), sendMsg->getTxDelay());
}
else if (MsgConfigureRemoteAddress::match(*message))
{
qDebug("UDPSinkFECWorker::handleInputMessages: %s", message->getIdentifier());
MsgConfigureRemoteAddress *addressMsg = (MsgConfigureRemoteAddress *) message;
m_remoteAddress = addressMsg->getAddress();
m_remotePort = addressMsg->getPort();
}
delete message;
}
}
void UDPSinkFECWorker::encodeAndTransmit(UDPSinkFEC::SuperBlock *txBlockx, uint16_t frameIndex, uint32_t nbBlocksFEC, uint32_t txDelay)
{
CM256::cm256_encoder_params cm256Params; //!< Main interface with CM256 encoder
CM256::cm256_block descriptorBlocks[256]; //!< Pointers to data for CM256 encoder
UDPSinkFEC::ProtectedBlock fecBlocks[256]; //!< FEC data
if ((nbBlocksFEC == 0) || !m_cm256Valid)
{
// qDebug("UDPSinkFECWorker::encodeAndTransmit: transmit frame without FEC to %s:%d", m_remoteAddress.toStdString().c_str(), m_remotePort);
for (unsigned int i = 0; i < UDPSinkFEC::m_nbOriginalBlocks; i++)
{
m_socket.SendDataGram((const void *) &txBlockx[i], (int) UDPSinkFEC::m_udpSize, m_remoteAddress.toStdString(), (uint32_t) m_remotePort);
//m_udpSocket->writeDatagram((const char *) &txBlockx[i], (int) UDPSinkFEC::m_udpSize, m_remoteAddress, m_remotePort);
usleep(txDelay);
}
}
else
{
cm256Params.BlockBytes = sizeof(UDPSinkFEC::ProtectedBlock);
cm256Params.OriginalCount = UDPSinkFEC::m_nbOriginalBlocks;
cm256Params.RecoveryCount = nbBlocksFEC;
// Fill pointers to data
for (int i = 0; i < cm256Params.OriginalCount + cm256Params.RecoveryCount; ++i)
{
if (i >= cm256Params.OriginalCount) {
memset((char *) &txBlockx[i].protectedBlock, 0, sizeof(UDPSinkFEC::ProtectedBlock));
}
txBlockx[i].header.frameIndex = frameIndex;
txBlockx[i].header.blockIndex = i;
descriptorBlocks[i].Block = (void *) &(txBlockx[i].protectedBlock);
descriptorBlocks[i].Index = txBlockx[i].header.blockIndex;
}
// Encode FEC blocks
if (m_cm256.cm256_encode(cm256Params, descriptorBlocks, fecBlocks))
{
qDebug("UDPSinkFECWorker::encodeAndTransmit: CM256 encode failed. No transmission.");
return;
}
// Merge FEC with data to transmit
for (int i = 0; i < cm256Params.RecoveryCount; i++)
{
txBlockx[i + cm256Params.OriginalCount].protectedBlock = fecBlocks[i];
}
// Transmit all blocks
// qDebug("UDPSinkFECWorker::encodeAndTransmit: transmit frame with FEC to %s:%d", m_remoteAddress.toStdString().c_str(), m_remotePort);
for (int i = 0; i < cm256Params.OriginalCount + cm256Params.RecoveryCount; i++)
{
#ifdef SDRDAEMON_PUNCTURE
if (i == SDRDAEMON_PUNCTURE) {
continue;
}
#endif
// std::cerr << "UDPSinkFEC::transmitUDP:"
// << " i: " << i
// << " frameIndex: " << (int) m_txBlocks[i].header.frameIndex
// << " blockIndex: " << (int) m_txBlocks[i].header.blockIndex
// << " i.q:";
//
// for (int j = 0; j < 10; j++)
// {
// std::cerr << " " << (int) m_txBlocks[i].protectedBlock.m_samples[j].m_real
// << "." << (int) m_txBlocks[i].protectedBlock.m_samples[j].m_imag;
// }
//
// std::cerr << std::endl;
m_socket.SendDataGram((const void *) &txBlockx[i], (int) UDPSinkFEC::m_udpSize, m_remoteAddress.toStdString(), (uint32_t) m_remotePort);
//m_udpSocket->writeDatagram((const char *) &txBlockx[i], (int) UDPSinkFEC::m_udpSize, m_remoteAddress, m_remotePort);
usleep(txDelay);
}
}
}