/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany // // written by Christian Daniel // // Copyright (C) 2015-2019, 2021 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "devicehackrf.h" DeviceHackRF::DeviceHackRF() { hackrf_error rc = (hackrf_error) hackrf_init(); if (rc != HACKRF_SUCCESS) { qCritical("DeviceHackRF::open_hackrf: failed to initiate HackRF library %s", hackrf_error_name(rc)); } } DeviceHackRF::~DeviceHackRF() { hackrf_exit(); } DeviceHackRF& DeviceHackRF::instance() { static DeviceHackRF inst; return inst; } hackrf_device *DeviceHackRF::open_hackrf(int sequence) { instance(); return open_hackrf_from_sequence(sequence); } hackrf_device *DeviceHackRF::open_hackrf(const char * const serial) { hackrf_error rc; hackrf_device *hackrf_ptr; instance(); rc = (hackrf_error) hackrf_open_by_serial(serial, &hackrf_ptr); if (rc == HACKRF_SUCCESS) { return hackrf_ptr; } else { qCritical("DeviceHackRF::open_hackrf: error #%d: %s", (int) rc, hackrf_error_name(rc)); return 0; } } hackrf_device *DeviceHackRF::open_hackrf_from_sequence(int sequence) { instance(); hackrf_device_list_t *hackrf_devices = hackrf_device_list(); if (hackrf_devices == nullptr) { return nullptr; } hackrf_device *hackrf_ptr; hackrf_error rc; rc = (hackrf_error) hackrf_device_list_open(hackrf_devices, sequence, &hackrf_ptr); hackrf_device_list_free(hackrf_devices); if (rc == HACKRF_SUCCESS) { return hackrf_ptr; } else { qCritical("DeviceHackRF::open_hackrf_from_sequence: error #%d: %s", (int) rc, hackrf_error_name(rc)); return 0; } } void DeviceHackRF::enumOriginDevices(const QString& hardwareId, PluginInterface::OriginDevices& originDevices) { instance(); hackrf_device_list_t *hackrf_devices = hackrf_device_list(); if (hackrf_devices == nullptr) { return; } hackrf_device *hackrf_ptr; read_partid_serialno_t read_partid_serialno; int i; for (i=0; i < hackrf_devices->devicecount; i++) { hackrf_error rc = (hackrf_error) hackrf_device_list_open(hackrf_devices, i, &hackrf_ptr); if (rc == HACKRF_SUCCESS) { qDebug("DeviceHackRF::enumOriginDevices: try to enumerate HackRF device #%d", i); rc = (hackrf_error) hackrf_board_partid_serialno_read(hackrf_ptr, &read_partid_serialno); if (rc != HACKRF_SUCCESS) { qDebug("DeviceHackRF::enumOriginDevices: failed to read serial no: %s", hackrf_error_name(rc)); hackrf_close(hackrf_ptr); continue; // next } uint32_t serial_msb = read_partid_serialno.serial_no[2]; uint32_t serial_lsb = read_partid_serialno.serial_no[3]; QString serial_str = QString::number(serial_msb, 16) + QString::number(serial_lsb, 16); //uint64_t serial_num = (((uint64_t) serial_msb)<<32) + serial_lsb; QString displayedName(QString("HackRF[%1] %2").arg(i).arg(serial_str)); originDevices.append(PluginInterface::OriginDevice( displayedName, hardwareId, serial_str, i, 1, 1 )); qDebug("DeviceHackRF::enumOriginDevices: enumerated HackRF device #%d", i); hackrf_close(hackrf_ptr); } else { qDebug("DeviceHackRF::enumOriginDevices: failed to enumerate HackRF device #%d: %s", i, hackrf_error_name(rc)); } } hackrf_device_list_free(hackrf_devices); } void DeviceHackRF::setDevicePPMCorrection(hackrf_device *dev, qint32 loPPMTenths) { if (!dev) { return; } hackrf_error rc = HACKRF_SUCCESS; const uint32_t msnaRegBase = 26; // Multisynth NA config register base const int32_t msnaFreq = 800000000; // Multisynth NA target frequency int32_t xo = 25000000; //Crystal frequency int32_t a; // Multisynth NA XTAL multiplier integer 32 * 25mhz = 800mhz int32_t b; // Multisynth NA XTAL multiplier fractional numerator 0 to 1048575 int32_t c; // Multisynth NA XTAL multiplier fractional denominator 1048575 max resolution int64_t rem; int32_t p1, p2, p3; // raw register values xo = xo - xo/1000000*loPPMTenths/10; //adjust crystal freq by ppm error a = msnaFreq / xo; //multiplier integer rem = msnaFreq % xo; // multiplier remainder if (rem) { //fraction mode b = ((rem * 10485750)/xo +5) /10; //multiplier fractional numerator with rounding c = 1048575; //multiplier fractional divisor rc = (hackrf_error) hackrf_si5351c_write(dev, 22, 128); // MSNA set fractional mode qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA set to fraction mode."; } else { //integer mode b = 0; c = 1; rc = (hackrf_error) hackrf_si5351c_write(dev, 22, 0); // MSNA set integer mode qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA set to integer mode."; } qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA rem" << rem; qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA xoppm" << loPPMTenths / 10.0f; qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA xo" << xo; qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA a" << a; qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA b" << b; qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA c" << c; p1 = 128*a + (128 * b/c) - 512; p2 = (128*b) % c; p3 = c; if (rc == HACKRF_SUCCESS) { rc = (hackrf_error) hackrf_si5351c_write(dev,msnaRegBase, (p3 >> 8) & 0xFF); // reg 26 MSNA_P3[15:8] } if (rc == HACKRF_SUCCESS) { rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 1, p3 & 0xFF); // reg 27 MSNA_P3[7:0] } if (rc == HACKRF_SUCCESS) { rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 2, (p1 >> 16) & 0x3); // reg28 bits 1:0 MSNA_P1[17:16] } if (rc == HACKRF_SUCCESS) { rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 3, (p1 >> 8) & 0xFF); // reg 29 MSNA_P1[15:8] } if (rc == HACKRF_SUCCESS) { rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 4, p1 & 0xFF); // reg 30 MSNA_P1[7:0] } if (rc == HACKRF_SUCCESS) { rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 5, ((p3 & 0xF0000) >> 12) | ((p2 >> 16) & 0xF)); // bits 7:4 MSNA_P3[19:16], reg31 bits 3:0 MSNA_P2[19:16] } if (rc == HACKRF_SUCCESS) { rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 6, (p2 >> 8) & 0xFF); // reg 32 MSNA_P2[15:8] } if (rc == HACKRF_SUCCESS) { rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 7, p2 & 0xFF); // reg 33 MSNA_P2[7:0] } if (rc != HACKRF_SUCCESS) { qDebug("DeviceHackRF::setDevicePPMCorrection: XTAL error adjust failed: %s", hackrf_error_name(rc)); } else { qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA registers" << msnaRegBase << "<-" << ((p3 >> 8) & 0xFF) << (msnaRegBase + 1) << "<-" << (p3 & 0xFF) << (msnaRegBase + 2) << "<-" << ((p1 >> 16) & 0x3) << (msnaRegBase + 3) << "<-" << ((p1 >> 8) & 0xFF) << (msnaRegBase + 4) << "<-" << (p1 & 0xFF) << (msnaRegBase + 5) << "<-" << (((p3 & 0xF0000) >> 12) | ((p2 >> 16) & 0xF)) << (msnaRegBase + 6) << "<-" << ((p2 >> 8) & 0xFF) << (msnaRegBase + 7) << "<-" << (p2 & 0xFF); qDebug() << "DeviceHackRF::setDevicePPMCorrection: XTAL error adjusted by" << (loPPMTenths / 10.0f) << "PPM."; } }