/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017-2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "devicelimesdrparam.h" #include "devicelimesdr.h" void DeviceLimeSDR::enumOriginDevices(const QString& hardwareId, PluginInterface::OriginDevices& originDevices) { lms_info_str_t* deviceList; int nbDevices; if ((nbDevices = LMS_GetDeviceList(0)) <= 0) { qDebug("DeviceLimeSDR::enumOriginDevices: Could not find any LimeSDR device"); return; // do nothing } deviceList = new lms_info_str_t[nbDevices]; if (LMS_GetDeviceList(deviceList) < 0) { qDebug("DeviceLimeSDR::enumOriginDevices: Could not obtain LimeSDR devices information"); delete[] deviceList; return; // do nothing } else { for (int i = 0; i < nbDevices; i++) { std::string serial("N/D"); findSerial((const char *) deviceList[i], serial); DeviceLimeSDRParams limeSDRParams; limeSDRParams.open(deviceList[i]); limeSDRParams.close(); QString displayedName(QString("LimeSDR[%1:$1] %2").arg(i).arg(serial.c_str())); originDevices.append(PluginInterface::OriginDevice( displayedName, hardwareId, QString(deviceList[i]), i, limeSDRParams.m_nbRxChannels, limeSDRParams.m_nbTxChannels )); } } delete[] deviceList; } bool DeviceLimeSDR::findSerial(const char *lmsInfoStr, std::string& serial) { std::regex serial_reg("serial=([0-9,A-F]+)"); std::string input(lmsInfoStr); std::smatch result; std::regex_search(input, result, serial_reg); if (result[1].str().length()>0) { serial = result[1].str(); return true; } else { return false; } } bool DeviceLimeSDR::setNCOFrequency(lms_device_t *device, bool dir_tx, std::size_t chan, bool enable, float frequency) { if (enable) { bool positive; float_type freqs[LMS_NCO_VAL_COUNT]; float_type phos[LMS_NCO_VAL_COUNT]; if (LMS_GetNCOFrequency(device, dir_tx, chan, freqs, phos) < 0) { fprintf(stderr, "DeviceLimeSDR::setNCOFrequency: cannot get NCO frequencies and phases\n"); } if (frequency < 0) { positive = false; frequency = -frequency; } else { positive = true; } freqs[0] = frequency; if (LMS_SetNCOFrequency(device, dir_tx, chan, freqs, 0.0f) < 0) { fprintf(stderr, "DeviceLimeSDR::setNCOFrequency: cannot set frequency to %f\n", frequency); return false; } if (LMS_SetNCOIndex(device, dir_tx, chan, 0, dir_tx^positive) < 0) { fprintf(stderr, "DeviceLimeSDR::setNCOFrequency: cannot set conversion direction %sfreq\n", positive ? "+" : "-"); return false; } if (dir_tx) { if (LMS_WriteParam(device,LMS7param(CMIX_BYP_TXTSP),0) < 0) { fprintf(stderr, "DeviceLimeSDR::setNCOFrequency: cannot enable Tx NCO\n"); return false; } } else { if (LMS_WriteParam(device,LMS7param(CMIX_BYP_RXTSP),0) < 0) { fprintf(stderr, "DeviceLimeSDR::setNCOFrequency: cannot enable Rx NCO\n"); return false; } } return true; } else { if (dir_tx) { if (LMS_WriteParam(device,LMS7param(CMIX_BYP_TXTSP),1) < 0) { fprintf(stderr, "DeviceLimeSDR::setNCOFrequency: cannot disable Tx NCO\n"); return false; } } else { if (LMS_WriteParam(device,LMS7param(CMIX_BYP_RXTSP),1) < 0) { fprintf(stderr, "DeviceLimeSDR::setNCOFrequency: cannot disable Rx NCO\n"); return false; } } return true; } } bool DeviceLimeSDR::SetRFELNA_dB(lms_device_t *device, std::size_t chan, int value) { if (LMS_WriteParam(device, LMS7param(MAC), chan+1) < 0) { fprintf(stderr, "DeviceLimeSDR::SetRFELNA_dB: cannot set channel to #%lu\n", chan); return false; } if (value > 30) { value = 30; } int val = value - 30; int g_lna_rfe = 0; if (val >= 0) g_lna_rfe = 15; else if (val >= -1) g_lna_rfe = 14; else if (val >= -2) g_lna_rfe = 13; else if (val >= -3) g_lna_rfe = 12; else if (val >= -4) g_lna_rfe = 11; else if (val >= -5) g_lna_rfe = 10; else if (val >= -6) g_lna_rfe = 9; else if (val >= -9) g_lna_rfe = 8; else if (val >= -12) g_lna_rfe = 7; else if (val >= -15) g_lna_rfe = 6; else if (val >= -18) g_lna_rfe = 5; else if (val >= -21) g_lna_rfe = 4; else if (val >= -24) g_lna_rfe = 3; else if (val >= -27) g_lna_rfe = 2; else g_lna_rfe = 1; if (LMS_WriteParam(device, LMS7param(G_LNA_RFE), g_lna_rfe) < 0) { fprintf(stderr, "DeviceLimeSDR::SetRFELNA_dB: cannot set LNA gain to %d (%d)\n", value, g_lna_rfe); return false; } return true; } bool DeviceLimeSDR::SetRFETIA_dB(lms_device_t *device, std::size_t chan, int value) { if (LMS_WriteParam(device, LMS7param(MAC), chan+1) < 0) { fprintf(stderr, "DeviceLimeSDR::SetRFETIA_dB: cannot set channel to #%lu\n", chan); return false; } if (value > 3) { value = 3; } else if (value < 1) { value = 1; } int g_tia_rfe = value; if (LMS_WriteParam(device, LMS7param(G_TIA_RFE), g_tia_rfe) < 0) { fprintf(stderr, "DeviceLimeSDR::SetRFELNA_dB: cannot set TIA gain to %d (%d)\n", value, g_tia_rfe); return false; } return true; } bool DeviceLimeSDR::SetRBBPGA_dB(lms_device_t *device, std::size_t chan, float value) { if (LMS_WriteParam(device, LMS7param(MAC), chan+1) < 0) { fprintf(stderr, "DeviceLimeSDR::SetRBBPGA_dB: cannot set channel to #%lu\n", chan); return false; } int g_pga_rbb = (int)(value + 12.5); if (g_pga_rbb > 0x1f) g_pga_rbb = 0x1f; if (g_pga_rbb < 0) g_pga_rbb = 0; if (LMS_WriteParam(device, LMS7param(G_PGA_RBB), g_pga_rbb) < 0) { fprintf(stderr, "DeviceLimeSDR::SetRBBPGA_dB: cannot set G_PGA_RBB to %d\n", g_pga_rbb); return false; } int rcc_ctl_pga_rbb = (430.0*pow(0.65, (g_pga_rbb/10.0))-110.35)/20.4516 + 16; int c_ctl_pga_rbb = 0; if (g_pga_rbb < 8) { c_ctl_pga_rbb = 3; } if (8 <= g_pga_rbb && g_pga_rbb < 13) { c_ctl_pga_rbb = 2; } if (13 <= g_pga_rbb && g_pga_rbb < 21) { c_ctl_pga_rbb = 1; } if (21 <= g_pga_rbb) { c_ctl_pga_rbb = 0; } if (LMS_WriteParam(device, LMS7param(RCC_CTL_PGA_RBB), rcc_ctl_pga_rbb) < 0) { fprintf(stderr, "DeviceLimeSDR::SetRBBPGA_dB: cannot set RCC_CTL_PGA_RBB to %d\n", rcc_ctl_pga_rbb); return false; } if (LMS_WriteParam(device, LMS7param(C_CTL_PGA_RBB), c_ctl_pga_rbb) < 0) { fprintf(stderr, "DeviceLimeSDR::SetRBBPGA_dB: cannot set C_CTL_PGA_RBB to %d\n", c_ctl_pga_rbb); return false; } return true; } bool DeviceLimeSDR::setRxAntennaPath(lms_device_t *device, std::size_t chan, int path) { // if (LMS_WriteParam(device, LMS7param(MAC), chan+1) < 0) // { // fprintf(stderr, "DeviceLimeSDR::setAntennaPath: cannot set channel to #%lu\n", chan); // return false; // } // // int sel_path_rfe = 0; // switch ((PathRFE) path) // { // case PATH_RFE_NONE: sel_path_rfe = 0; break; // case PATH_RFE_LNAH: sel_path_rfe = 1; break; // case PATH_RFE_LNAL: sel_path_rfe = 2; break; // case PATH_RFE_LNAW: sel_path_rfe = 3; break; // case PATH_RFE_LB1: sel_path_rfe = 3; break; // case PATH_RFE_LB2: sel_path_rfe = 2; break; // } // // int pd_lna_rfe = 1; // switch ((PathRFE) path) // { // case PATH_RFE_LNAH: // case PATH_RFE_LNAL: // case PATH_RFE_LNAW: pd_lna_rfe = 0; break; // default: break; // } // // int pd_rloopb_1_rfe = (path == (int) PATH_RFE_LB1) ? 0 : 1; // int pd_rloopb_2_rfe = (path == (int) PATH_RFE_LB2) ? 0 : 1; // int en_inshsw_l_rfe = (path == (int) PATH_RFE_LNAL ) ? 0 : 1; // int en_inshsw_w_rfe = (path == (int) PATH_RFE_LNAW) ? 0 : 1; // int en_inshsw_lb1_rfe = (path == (int) PATH_RFE_LB1) ? 0 : 1; // int en_inshsw_lb2_rfe = (path == (int) PATH_RFE_LB2) ? 0 : 1; // // int ret = 0; // // ret += LMS_WriteParam(device, LMS7param(PD_LNA_RFE), pd_lna_rfe); // ret += LMS_WriteParam(device, LMS7param(PD_RLOOPB_1_RFE), pd_rloopb_1_rfe); // ret += LMS_WriteParam(device, LMS7param(PD_RLOOPB_2_RFE), pd_rloopb_2_rfe); // ret += LMS_WriteParam(device, LMS7param(EN_INSHSW_LB1_RFE), en_inshsw_lb1_rfe); // ret += LMS_WriteParam(device, LMS7param(EN_INSHSW_LB2_RFE), en_inshsw_lb2_rfe); // ret += LMS_WriteParam(device, LMS7param(EN_INSHSW_L_RFE), en_inshsw_l_rfe); // ret += LMS_WriteParam(device, LMS7param(EN_INSHSW_W_RFE), en_inshsw_w_rfe); // ret += LMS_WriteParam(device, LMS7param(SEL_PATH_RFE), sel_path_rfe); // // if (ret < 0) // { // fprintf(stderr, "DeviceLimeSDR::setAntennaPath: cannot set channel #%lu to %d\n", chan, path); // return false; // } // // //enable/disable the loopback path // const bool loopback = (path == (int) PATH_RFE_LB1) or (path == (int) PATH_RFE_LB2); // // if (LMS_WriteParam(device, LMS7param(EN_LOOPB_TXPAD_TRF), loopback ? 1 : 0) < 0) // { // fprintf(stderr, "DeviceLimeSDR::setAntennaPath: cannot %sset loopback on channel #%lu\n", loopback ? "" : "re", chan); // return false; // } // // //update external band-selection to match // //this->UpdateExternalBandSelect(); // // return true; switch ((PathRxRFE) path) { case PATH_RFE_LNAH: if (LMS_SetAntenna(device, LMS_CH_RX, chan, 1) < 0) { fprintf(stderr, "DeviceLimeSDR::setRxAntennaPath: cannot set to LNAH\n"); return false; } break; case PATH_RFE_LNAL: if (LMS_SetAntenna(device, LMS_CH_RX, chan, 2) < 0) { fprintf(stderr, "DeviceLimeSDR::setRxAntennaPath: cannot set to LNAL\n"); return false; } break; case PATH_RFE_LNAW: if (LMS_SetAntenna(device, LMS_CH_RX, chan, 3) < 0) { fprintf(stderr, "DeviceLimeSDR::setRxAntennaPath: cannot set to LNAW\n"); return false; } break; case PATH_RFE_LB1: if (LMS_SetAntenna(device, LMS_CH_TX, chan, 1) < 0) { fprintf(stderr, "DeviceLimeSDR::setRxAntennaPath: cannot set to Loopback TX1\n"); return false; } break; case PATH_RFE_LB2: if (LMS_SetAntenna(device, LMS_CH_TX, chan, 2) < 0) { fprintf(stderr, "DeviceLimeSDR::setRxAntennaPath: cannot set to Loopback TX2\n"); return false; } break; case PATH_RFE_RX_NONE: default: if (LMS_SetAntenna(device, LMS_CH_RX, chan, 0) < 0) { fprintf(stderr, "DeviceLimeSDR::setRxAntennaPath: cannot set to none\n"); return false; } } return true; } bool DeviceLimeSDR::setTxAntennaPath(lms_device_t *device, std::size_t chan, int path) { switch ((PathTxRFE) path) { case PATH_RFE_TXRF1: if (LMS_SetAntenna(device, LMS_CH_TX, chan, 1) < 0) { fprintf(stderr, "DeviceLimeSDR::setTxAntennaPath: cannot set to TXRF1\n"); return false; } break; case PATH_RFE_TXRF2: if (LMS_SetAntenna(device, LMS_CH_TX, chan, 2) < 0) { fprintf(stderr, "DeviceLimeSDR::setTxAntennaPath: cannot set to TXRF2\n"); return false; } break; case PATH_RFE_TX_NONE: default: if (LMS_SetAntenna(device, LMS_CH_TX, chan, 0) < 0) { fprintf(stderr, "DeviceLimeSDR::setTxAntennaPath: cannot set to none\n"); return false; } } return true; } bool DeviceLimeSDR::setClockSource(lms_device_t *device, bool extClock, uint32_t extClockFrequency) { if (extClock) { if (LMS_SetClockFreq(device, LMS_CLOCK_EXTREF, (float) extClockFrequency) < 0) { fprintf(stderr, "DeviceLimeSDR::setClockSource: cannot set to external\n"); return false; } } else { uint16_t vcoTrimValue; if (LMS_VCTCXORead(device, &vcoTrimValue)) { fprintf(stderr, "DeviceLimeSDR::setClockSource: cannot read VCTXO trim value\n"); return false; } if (LMS_VCTCXOWrite(device, vcoTrimValue)) { fprintf(stderr, "DeviceLimeSDR::setClockSource: cannot write VCTXO trim value\n"); return false; } } return true; }