// Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "wfmmodsource.h" const int WFMModSource::m_rfFilterFFTLength = 1024; const int WFMModSource::m_levelNbSamples = 480; // every 10ms WFMModSource::WFMModSource() : m_channelSampleRate(384000), m_channelFrequencyOffset(0), m_modPhasor(0.0f), m_audioFifo(4800), m_levelCalcCount(0), m_peakLevel(0.0f), m_levelSum(0.0f), m_ifstream(nullptr), m_audioSampleRate(48000) { m_rfFilter = new fftfilt(-62500.0 / 384000.0, 62500.0 / 384000.0, m_rfFilterFFTLength); m_rfFilterBuffer = new Complex[m_rfFilterFFTLength]; std::fill(m_rfFilterBuffer, m_rfFilterBuffer+m_rfFilterFFTLength, Complex{0,0}); m_rfFilterBufferIndex = 0; m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_magsq = 0.0; applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } WFMModSource::~WFMModSource() { delete m_rfFilter; delete[] m_rfFilterBuffer; } void WFMModSource::pull(SampleVector::iterator begin, unsigned int nbSamples) { std::for_each( begin, begin + nbSamples, [this](Sample& s) { pullOne(s); } ); } void WFMModSource::pullOne(Sample& sample) { if (m_settings.m_channelMute) { sample.m_real = 0.0f; sample.m_imag = 0.0f; return; } Complex ci, ri; fftfilt::cmplx *rf; int rf_out; Real t; if ((m_settings.m_modAFInput == WFMModSettings::WFMModInputFile) || (m_settings.m_modAFInput == WFMModSettings::WFMModInputAudio)) { if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ri)) { pullAF(t); calculateLevel(t); m_modSample.real(t); m_modSample.imag(0.0f); m_audioBufferFill++; } t = ri.real(); m_interpolatorDistanceRemain += m_interpolatorDistance; } else { pullAF(t); calculateLevel(t); } m_modPhasor += (m_settings.m_fmDeviation / (float) m_channelSampleRate) * t * M_PI * 2.0f; // limit phasor range to ]-pi,pi] if (m_modPhasor > M_PI) { m_modPhasor -= (2.0f * M_PI); } ci.real(cos(m_modPhasor) * 0.891235351562f * SDR_TX_SCALEF); // -1 dB ci.imag(sin(m_modPhasor) * 0.891235351562f * SDR_TX_SCALEF); // RF filtering rf_out = m_rfFilter->runFilt(ci, &rf); if (rf_out > 0) { memcpy((void *) m_rfFilterBuffer, (const void *) rf, rf_out*sizeof(Complex)); m_rfFilterBufferIndex = 0; } ci = m_rfFilterBuffer[m_rfFilterBufferIndex] * m_carrierNco.nextIQ(); // shift to carrier frequency m_rfFilterBufferIndex++; double magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); magsq /= (SDR_TX_SCALED*SDR_TX_SCALED); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); sample.m_real = (FixReal) ci.real(); sample.m_imag = (FixReal) ci.imag(); } void WFMModSource::prefetch(unsigned int nbSamples) { unsigned int nbSamplesAudio = nbSamples * ((Real) m_audioSampleRate / (Real) m_channelSampleRate); pullAudio(nbSamplesAudio); } void WFMModSource::pullAudio(unsigned int nbSamplesAudio) { if (nbSamplesAudio > m_audioBuffer.size()) { m_audioBuffer.resize(nbSamplesAudio); } m_audioFifo.read(reinterpret_cast(&m_audioBuffer[0]), nbSamplesAudio); m_audioBufferFill = 0; } void WFMModSource::pullAF(Real& sample) { switch (m_settings.m_modAFInput) { case WFMModSettings::WFMModInputTone: sample = m_toneNco.next() * m_settings.m_volumeFactor; break; case WFMModSettings::WFMModInputFile: // sox f4exb_call.wav --encoding float --endian little f4exb_call.raw // ffplay -f f32le -ar 48k -ac 1 f4exb_call.raw if (m_ifstream && m_ifstream->is_open()) { if (m_ifstream->eof()) { if (m_settings.m_playLoop) { m_ifstream->clear(); m_ifstream->seekg(0, std::ios::beg); } } if (m_ifstream->eof()) { sample = 0.0f; } else { Real s; m_ifstream->read(reinterpret_cast(&s), sizeof(Real)); sample = s * m_settings.m_volumeFactor; } } else { sample = 0.0f; } break; case WFMModSettings::WFMModInputAudio: { sample = ((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r) / 65536.0f) * m_settings.m_volumeFactor; } break; case WFMModSettings::WFMModInputCWTone: Real fadeFactor; if (m_cwKeyer.getSample()) { m_cwKeyer.getCWSmoother().getFadeSample(true, fadeFactor); sample = m_toneNco.next() * m_settings.m_volumeFactor * fadeFactor; } else { if (m_cwKeyer.getCWSmoother().getFadeSample(false, fadeFactor)) { sample = m_toneNco.next() * m_settings.m_volumeFactor * fadeFactor; } else { sample = 0.0f; m_toneNco.setPhase(0); } } break; case WFMModSettings::WFMModInputNone: default: sample = 0.0f; break; } } void WFMModSource::calculateLevel(const Real& sample) { if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), sample); m_levelSum += sample * sample; m_levelCalcCount++; } else { m_rmsLevel = sqrt(m_levelSum / m_levelNbSamples); m_peakLevelOut = m_peakLevel; m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void WFMModSource::applyAudioSampleRate(unsigned int sampleRate) { qDebug("WFMModSource::applyAudioSampleRate: %d", sampleRate); m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) sampleRate / (Real) m_channelSampleRate; m_interpolator.create(48, sampleRate, m_settings.m_rfBandwidth / 2.2, 3.0); m_audioSampleRate = sampleRate; } void WFMModSource::applySettings(const WFMModSettings& settings, bool force) { if ((settings.m_afBandwidth != m_settings.m_afBandwidth) || force) { m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_audioSampleRate / (Real) m_channelSampleRate; m_interpolator.create(48, m_audioSampleRate, settings.m_afBandwidth / 2.2, 3.0); } if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { Real lowCut = -(settings.m_rfBandwidth / 2.0) / m_channelSampleRate; Real hiCut = (settings.m_rfBandwidth / 2.0) / m_channelSampleRate; m_rfFilter->create_filter(lowCut, hiCut); } if ((settings.m_toneFrequency != m_settings.m_toneFrequency) || force) { m_toneNco.setFreq(settings.m_toneFrequency, m_channelSampleRate); } m_settings = settings; } void WFMModSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "WFMModSource::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate); } if ((channelSampleRate != m_channelSampleRate) || force) { m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_audioSampleRate / (Real) channelSampleRate; m_interpolator.create(48, m_audioSampleRate, m_settings.m_afBandwidth / 2.2, 3.0); Real lowCut = -(m_settings.m_rfBandwidth / 2.0) / channelSampleRate; Real hiCut = (m_settings.m_rfBandwidth / 2.0) / channelSampleRate; m_rfFilter->create_filter(lowCut, hiCut); m_toneNco.setFreq(m_settings.m_toneFrequency, channelSampleRate); m_cwKeyer.setSampleRate(channelSampleRate); m_cwKeyer.reset(); } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; }