/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "dsp/samplemofifo.h" #include "dsp/basebandsamplesink.h" #include "testmosyncsettings.h" #include "testmosyncthread.h" TestMOSyncThread::TestMOSyncThread(QObject* parent) : QThread(parent), m_running(false), m_buf(nullptr), m_log2Interp(0), m_throttlems(TestMOSyncSettings::m_msThrottle), m_throttleToggle(false), m_samplesRemainder(0), m_samplerate(0), m_feedSpectrumIndex(0), m_spectrumSink(nullptr) { qDebug("TestMOSyncThread::TestMOSyncThread"); setSamplerate(48000); } TestMOSyncThread::~TestMOSyncThread() { qDebug("TestMOSyncThread::~TestMOSyncThread"); if (m_running) { stopWork(); } delete[] m_buf; } void TestMOSyncThread::startWork() { qDebug("TestMOSyncThread::startWork"); m_startWaitMutex.lock(); m_elapsedTimer.start(); start(); while(!m_running) { m_startWaiter.wait(&m_startWaitMutex, 100); } m_startWaitMutex.unlock(); } void TestMOSyncThread::stopWork() { qDebug("TestMOSyncThread::stopWork"); m_running = false; wait(); } void TestMOSyncThread::run() { m_running = true; m_startWaiter.wakeAll(); while(m_running) // actual work is in the tick() function { sleep(1); } m_running = false; } void TestMOSyncThread::connectTimer(const QTimer& timer) { qDebug() << "TestMOSyncThread::connectTimer"; connect(&timer, SIGNAL(timeout()), this, SLOT(tick())); } void TestMOSyncThread::setSamplerate(int samplerate) { if (samplerate != m_samplerate) { qDebug() << "TestMOSyncThread::setSamplerate:" << " new:" << samplerate << " old:" << m_samplerate; bool wasRunning = false; if (m_running) { stopWork(); wasRunning = true; } m_samplerate = samplerate; m_samplesChunkSize = (m_samplerate * m_throttlems) / 1000; m_blockSize = (m_samplerate * 50) / 1000; if (m_buf) { delete[] m_buf; } m_buf = new qint16[2*m_blockSize*2]; if (wasRunning) { startWork(); } } } void TestMOSyncThread::setLog2Interpolation(unsigned int log2Interpolation) { if ((log2Interpolation < 0) || (log2Interpolation > 6)) { return; } if (log2Interpolation != m_log2Interp) { qDebug() << "TestSinkThread::setLog2Interpolation:" << " new:" << log2Interpolation << " old:" << m_log2Interp; bool wasRunning = false; if (m_running) { stopWork(); wasRunning = true; } m_log2Interp = log2Interpolation; if (wasRunning) { startWork(); } } } unsigned int TestMOSyncThread::getLog2Interpolation() const { return m_log2Interp; } void TestMOSyncThread::setFcPos(int fcPos) { m_fcPos = fcPos; } int TestMOSyncThread::getFcPos() const { return m_fcPos; } void TestMOSyncThread::callback(qint16* buf, qint32 samplesPerChannel) { unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End; m_sampleFifo->readSync(samplesPerChannel/(1< decim=16). len is a number of samples (not a number of I or Q) void TestMOSyncThread::callbackPart(qint16* buf, qint32 nSamples, int iBegin) { for (unsigned int channel = 0; channel < 2; channel++) { SampleVector::iterator begin = m_sampleFifo->getData(channel).begin() + iBegin; if (m_log2Interp == 0) { m_interpolators[channel].interpolate1(&begin, &buf[channel*2*nSamples], 2*nSamples); } else { if (m_fcPos == 0) // Infra { switch (m_log2Interp) { case 1: m_interpolators[channel].interpolate2_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 2: m_interpolators[channel].interpolate4_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 3: m_interpolators[channel].interpolate8_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 4: m_interpolators[channel].interpolate16_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 5: m_interpolators[channel].interpolate32_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 6: m_interpolators[channel].interpolate64_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; default: break; } } else if (m_fcPos == 1) // Supra { switch (m_log2Interp) { case 1: m_interpolators[channel].interpolate2_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 2: m_interpolators[channel].interpolate4_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 3: m_interpolators[channel].interpolate8_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 4: m_interpolators[channel].interpolate16_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 5: m_interpolators[channel].interpolate32_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 6: m_interpolators[channel].interpolate64_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; default: break; } } else if (m_fcPos == 2) // Center { switch (m_log2Interp) { case 1: m_interpolators[channel].interpolate2_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 2: m_interpolators[channel].interpolate4_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 3: m_interpolators[channel].interpolate8_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 4: m_interpolators[channel].interpolate16_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 5: m_interpolators[channel].interpolate32_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 6: m_interpolators[channel].interpolate64_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; default: break; } } } if (channel == m_feedSpectrumIndex) { feedSpectrum(&buf[channel*2*nSamples], nSamples*2); } } } void TestMOSyncThread::tick() { if (m_running) { qint64 throttlems = m_elapsedTimer.restart(); if (throttlems != m_throttlems) { m_throttlems = throttlems; m_samplesChunkSize = (m_samplerate * (m_throttlems+(m_throttleToggle ? 1 : 0))) / 1000; m_throttleToggle = !m_throttleToggle; } unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End; std::vector& data = m_sampleFifo->getData(); m_sampleFifo->readSync(m_samplesChunkSize, iPart1Begin, iPart1End, iPart2Begin, iPart2End); if (iPart1Begin != iPart1End) { callbackPart(data, iPart1Begin, iPart1End); } if (iPart2Begin != iPart2End) { callbackPart(data, iPart2Begin, iPart2End); } } } void TestMOSyncThread::callbackPart(std::vector& data, unsigned int iBegin, unsigned int iEnd) { unsigned int chunkSize = iEnd - iBegin; for (unsigned int channel = 0; channel < 2; channel++) { SampleVector::iterator beginRead = data[channel].begin() + iBegin; if (m_log2Interp == 0) { m_interpolators[channel].interpolate1(&beginRead, m_buf, 2*chunkSize); if (channel == m_feedSpectrumIndex) { feedSpectrum(m_buf, 2*chunkSize); } } else { switch (m_log2Interp) { case 1: m_interpolators[channel].interpolate2_cen(&beginRead, m_buf, chunkSize*(1< Sample { return Sample{s.m_real, s.m_imag}; } ); m_spectrumSink->feed(m_samplesVector.m_vector.begin(), m_samplesVector.m_vector.begin() + (bufSize/2), false); }