/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2018 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "audiocompressor.h" const uint16_t AudioCompressor::ALAW_MAX = 0xFFF; const uint16_t AudioCompressor::MULAW_MAX = 0x1FFF; const uint16_t AudioCompressor::MULAW_BIAS = 33; AudioCompressor::AudioCompressor() { fillLUT2(); } AudioCompressor::~AudioCompressor() {} void AudioCompressor::fillLUT() { for (int i=0; i<8192; i++) { m_lut[i] = (24576/8192)*i; } for (int i=8192; i<2*8192; i++) { m_lut[i] = 24576 + 0.5f*(i-8192); } for (int i=2*8192; i<3*8192; i++) { m_lut[i] = 24576 + 4096 + 0.25f*(i-2*8192); } for (int i=3*8192; i<4*8192; i++) { m_lut[i] = 24576 + 4096 + 2048 + 0.125f*(i-3*8192); } } void AudioCompressor::fillLUT2() { for (int i=0; i<4096; i++) { m_lut[i] = (24576/4096)*i; } for (int i=4096; i<2*4096; i++) { m_lut[i] = 24576 + 0.5f*(i-4096); } for (int i=2*4096; i<3*4096; i++) { m_lut[i] = 24576 + 2048 + 0.25f*(i-2*4096); } for (int i=3*4096; i<4*4096; i++) { m_lut[i] = 24576 + 2048 + 1024 + 0.125f*(i-3*4096); } for (int i=4*4096; i<5*4096; i++) { m_lut[i] = 24576 + 2048 + 1024 + 512 + 0.0625f*(i-4*4096); } for (int i=5*4096; i<6*4096; i++) { m_lut[i] = 24576 + 2048 + 1024 + 512 + 256 + 0.03125f*(i-5*4096); } for (int i=6*4096; i<7*4096; i++) { m_lut[i] = 24576 + 2048 + 1024 + 512 + 256 + 128 + 0.015625f*(i-6*4096); } for (int i=7*4096; i<8*4096; i++) { m_lut[i] = 24576 + 2048 + 1024 + 512 + 256 + 128 + 64 + 0.0078125f*(i-7*4096); } } void AudioCompressor::fillALaw() { for (int i=-16384; i<16384; i++) { m_lut[i+16384] = ALaw_Encode(2*i); } } void AudioCompressor::fillULaw() { for (int i=-16384; i<16384; i++) { m_lut[i+16384] = MuLaw_Encode(2*i); } } int16_t AudioCompressor::compress(int16_t sample) { int16_t sign = sample < 0 ? -1 : 1; int16_t abs = sample < 0 ? -sample : sample; return sign * m_lut[abs]; } int8_t AudioCompressor::compress8(int16_t sample) { return m_lut[sample/2 + 16384]; } /* http://dystopiancode.blogspot.com/2012/02/pcm-law-and-u-law-companding-algorithms.html * * First, the number is verified is its negative. If the number is negative he will be made * positive and the sign variable (by default 0) will contain the value 0x80 * (so when it's OR-ed to the coded result it will determine it's sign). * * Since the A-Law algorithm considers numbers in the range 0x000 - 0xFFF * (without considering the sign bit), if a number is bigger than 0xFFF, it will automatically * made equal to 0xFFF in order to avoid further problems. * * The first step in determining the coded value is finding the position of the first bit * who has a 1 value (excluding the sign bit). The search is started from position 11 * and is continued until a bit with the value 1 is find or until a position smaller than 5 is met. * * If the position is smaller than 5 (there was no 1 bit found on the positions 11-5), * the least significant byte of the coded number is made equal the the bits 5,4,3,2 * of the original number. Otherwise the least significant bit of the coded number is equal * to the first four bits who come after the first 1 bit encountered. * * In the end, the most significant byte of the coded number is computed according to the position * of the first 1 bit (if not such this was found, then the position is considered). * * Also, before returning the result, the even bits of the result will be complemented * (by XOR-ing with 0x55). */ int8_t AudioCompressor::ALaw_Encode(int16_t number) { uint16_t mask = 0x800; uint8_t sign = 0; uint8_t position = 11; uint8_t lsb = 0; if (number < 0) { number = -number; sign = 0x80; } if (number > ALAW_MAX) { number = ALAW_MAX; } for (; ((number & mask) != mask && position >= 5); mask >>= 1, position--) { } lsb = (number >> ((position == 4) ? (1) : (position - 4))) & 0x0f; return (sign | ((position - 4) << 4) | lsb) ^ 0x55; } /* http://dystopiancode.blogspot.com/2012/02/pcm-law-and-u-law-companding-algorithms.html * * The µ-Law compression algorithm is very similar to the A-Law compression algorithm. * The main difference is that the µ-Law uses 13 bits instead of 12 bits, so the position * variable will be initialized with 12 instead of 11. In order to make sure that there will be * no number without a 1 bit in the first 12-5 positions, a bias value is added to the number * (in this case 33). So, since there is no special case (numbers who do not have a 1 bit in * the first 12-5 positions), this makes the algorithm less complex by eliminating some condtions. * * Also in the end all bits are complemented, not just the even ones. */ int8_t AudioCompressor::MuLaw_Encode(int16_t number) { uint16_t mask = 0x1000; uint8_t sign = 0; uint8_t position = 12; uint8_t lsb = 0; if (number < 0) { number = -number; sign = 0x80; } number += MULAW_BIAS; if (number > MULAW_MAX) { number = MULAW_MAX; } for (; ((number & mask) != mask && position >= 5); mask >>= 1, position--) { } lsb = (number >> (position - 4)) & 0x0f; return (~(sign | ((position - 5) << 4) | lsb)); }