/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "../../channelrx/demodbfm/bfmdemod.h" #include #include #include #include #include "audio/audiooutput.h" #include "dsp/dspengine.h" #include "dsp/pidcontroller.h" #include "bfmdemod.h" #include #include "../../channelrx/demodbfm/rdsparser.h" MESSAGE_CLASS_DEFINITION(BFMDemod::MsgConfigureBFMDemod, Message) const Real BFMDemod::default_deemphasis = 50.0; // 50 us BFMDemod::BFMDemod(BasebandSampleSink* sampleSink, RDSParser *rdsParser) : m_sampleSink(sampleSink), m_rdsParser(rdsParser), m_audioFifo(4, 250000), m_settingsMutex(QMutex::Recursive), m_pilotPLL(19000/384000, 50/384000, 0.01), m_deemphasisFilterX(default_deemphasis * 48000 * 1.0e-6), m_deemphasisFilterY(default_deemphasis * 48000 * 1.0e-6), m_fmExcursion(default_excursion) { setObjectName("BFMDemod"); m_config.m_inputSampleRate = 384000; m_config.m_inputFrequencyOffset = 0; m_config.m_rfBandwidth = 180000; m_config.m_afBandwidth = 15000; m_config.m_squelch = -60.0; m_config.m_volume = 2.0; m_config.m_audioSampleRate = DSPEngine::instance()->getAudioSampleRate(); // normally 48 kHz m_deemphasisFilterX.configure(default_deemphasis * m_config.m_audioSampleRate * 1.0e-6); m_deemphasisFilterY.configure(default_deemphasis * m_config.m_audioSampleRate * 1.0e-6); m_rfFilter = new fftfilt(-50000.0 / 384000.0, 50000.0 / 384000.0, filtFftLen); m_phaseDiscri.setFMScaling(384000/m_fmExcursion); apply(); m_audioBuffer.resize(16384); m_audioBufferFill = 0; // m_movingAverage.resize(16, 0); m_magsq = 0.0f; m_magsqSum = 0.0f; m_magsqPeak = 0.0f; m_magsqCount = 0; DSPEngine::instance()->addAudioSink(&m_audioFifo); } BFMDemod::~BFMDemod() { if (m_rfFilter) { delete m_rfFilter; } DSPEngine::instance()->removeAudioSink(&m_audioFifo); } void BFMDemod::configure(MessageQueue* messageQueue, Real rfBandwidth, Real afBandwidth, Real volume, Real squelch, bool audioStereo, bool lsbStereo, bool showPilot, bool rdsActive) { Message* cmd = MsgConfigureBFMDemod::create(rfBandwidth, afBandwidth, volume, squelch, audioStereo, lsbStereo, showPilot, rdsActive); messageQueue->push(cmd); } void BFMDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst) { Complex ci, cs, cr; fftfilt::cmplx *rf; int rf_out; double msq; Real demod; m_sampleBuffer.clear(); m_settingsMutex.lock(); for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real() / 32768.0f, it->imag() / 32768.0f); c *= m_nco.nextIQ(); rf_out = m_rfFilter->runFilt(c, &rf); // filter RF before demod for (int i =0 ; i m_magsqPeak) { m_magsqPeak = msq; } m_magsqCount++; // m_movingAverage.feed(msq); if(m_magsq >= m_squelchLevel) { m_squelchState = m_running.m_rfBandwidth / 20; // decay rate } if(m_squelchState > 0) { m_squelchState--; //demod = phaseDiscriminator2(rf[i], msq); demod = m_phaseDiscri.phaseDiscriminator(rf[i]); } else { demod = 0; } if (!m_running.m_showPilot) { m_sampleBuffer.push_back(Sample(demod * (1<<15), 0.0)); } if (m_running.m_rdsActive) { //Complex r(demod * 2.0 * std::cos(3.0 * m_pilotPLLSamples[3]), 0.0); Complex r(demod * 2.0 * std::cos(3.0 * m_pilotPLLSamples[3]), 0.0); if (m_interpolatorRDS.decimate(&m_interpolatorRDSDistanceRemain, r, &cr)) { bool bit; if (m_rdsDemod.process(cr.real(), bit)) { if (m_rdsDecoder.frameSync(bit)) { if (m_rdsParser) { m_rdsParser->parseGroup(m_rdsDecoder.getGroup()); } } } m_interpolatorRDSDistanceRemain += m_interpolatorRDSDistance; } } Real sampleStereo; // Process stereo if stereo mode is selected if (m_running.m_audioStereo) { m_pilotPLL.process(demod, m_pilotPLLSamples); if (m_running.m_showPilot) { m_sampleBuffer.push_back(Sample(m_pilotPLLSamples[1] * (1<<15), 0.0)); // debug 38 kHz pilot } if (m_running.m_lsbStereo) { // 1.17 * 0.7 = 0.819 Complex s(demod * m_pilotPLLSamples[1], demod * m_pilotPLLSamples[2]); if (m_interpolatorStereo.decimate(&m_interpolatorStereoDistanceRemain, s, &cs)) { sampleStereo = cs.real() + cs.imag(); m_interpolatorStereoDistanceRemain += m_interpolatorStereoDistance; } } else { Complex s(demod * 1.17 * m_pilotPLLSamples[1], 0); if (m_interpolatorStereo.decimate(&m_interpolatorStereoDistanceRemain, s, &cs)) { sampleStereo = cs.real(); m_interpolatorStereoDistanceRemain += m_interpolatorStereoDistance; } } } Complex e(demod, 0); if (m_interpolator.decimate(&m_interpolatorDistanceRemain, e, &ci)) { if (m_running.m_audioStereo) { Real deemph_l, deemph_r; // Pre-emphasis is applied on each channel before multiplexing m_deemphasisFilterX.process(ci.real() + sampleStereo, deemph_l); m_deemphasisFilterY.process(ci.real() - sampleStereo, deemph_r); if (m_running.m_lsbStereo) { m_audioBuffer[m_audioBufferFill].l = (qint16)(deemph_l * (1<<12) * m_running.m_volume); m_audioBuffer[m_audioBufferFill].r = (qint16)(deemph_r * (1<<12) * m_running.m_volume); } else { m_audioBuffer[m_audioBufferFill].l = (qint16)(deemph_l * (1<<12) * m_running.m_volume); m_audioBuffer[m_audioBufferFill].r = (qint16)(deemph_r * (1<<12) * m_running.m_volume); } } else { Real deemph; m_deemphasisFilterX.process(ci.real(), deemph); quint16 sample = (qint16)(deemph * (1<<12) * m_running.m_volume); m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; } ++m_audioBufferFill; if(m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1); if(res != m_audioBufferFill) { qDebug("BFMDemod::feed: %u/%u audio samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_interpolatorDistanceRemain += m_interpolatorDistance; } } } if(m_audioBufferFill > 0) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1); if(res != m_audioBufferFill) { qDebug("BFMDemod::feed: %u/%u tail samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } if(m_sampleSink != 0) { m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), true); } m_sampleBuffer.clear(); m_settingsMutex.unlock(); } void BFMDemod::start() { m_squelchState = 0; m_audioFifo.clear(); m_phaseDiscri.reset(); } void BFMDemod::stop() { } bool BFMDemod::handleMessage(const Message& cmd) { if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; m_config.m_inputSampleRate = notif.getSampleRate(); m_config.m_inputFrequencyOffset = notif.getFrequencyOffset(); apply(); qDebug() << "BFMDemod::handleMessage: MsgChannelizerNotification: m_inputSampleRate: " << m_config.m_inputSampleRate << " m_inputFrequencyOffset: " << m_config.m_inputFrequencyOffset; return true; } else if (MsgConfigureBFMDemod::match(cmd)) { MsgConfigureBFMDemod& cfg = (MsgConfigureBFMDemod&) cmd; m_config.m_rfBandwidth = cfg.getRFBandwidth(); m_config.m_afBandwidth = cfg.getAFBandwidth(); m_config.m_volume = cfg.getVolume(); m_config.m_squelch = cfg.getSquelch(); m_config.m_audioStereo = cfg.getAudioStereo(); m_config.m_lsbStereo = cfg.getLsbStereo(); m_config.m_showPilot = cfg.getShowPilot(); m_config.m_rdsActive = cfg.getRDSActive(); apply(); qDebug() << "BFMDemod::handleMessage: MsgConfigureBFMDemod: m_rfBandwidth: " << m_config.m_rfBandwidth << " m_afBandwidth: " << m_config.m_afBandwidth << " m_volume: " << m_config.m_volume << " m_squelch: " << m_config.m_squelch << " m_audioStereo: " << m_config.m_audioStereo << " m_lsbStereo: " << m_config.m_lsbStereo << " m_showPilot: " << m_config.m_showPilot << " m_rdsActive: " << m_config.m_rdsActive; return true; } else { qDebug() << "BFMDemod::handleMessage: none"; if (m_sampleSink != 0) { return m_sampleSink->handleMessage(cmd); } else { return false; } } } void BFMDemod::apply() { if ((m_config.m_inputSampleRate != m_running.m_inputSampleRate) || (m_config.m_audioStereo && (m_config.m_audioStereo != m_running.m_audioStereo))) { m_pilotPLL.configure(19000.0/m_config.m_inputSampleRate, 50.0/m_config.m_inputSampleRate, 0.01); } if((m_config.m_inputFrequencyOffset != m_running.m_inputFrequencyOffset) || (m_config.m_inputSampleRate != m_running.m_inputSampleRate)) { qDebug() << "BFMDemod::handleMessage: m_nco.setFreq"; m_nco.setFreq(-m_config.m_inputFrequencyOffset, m_config.m_inputSampleRate); } if((m_config.m_inputSampleRate != m_running.m_inputSampleRate) || (m_config.m_afBandwidth != m_running.m_afBandwidth)) { m_settingsMutex.lock(); qDebug() << "BFMDemod::handleMessage: m_interpolator.create"; m_interpolator.create(16, m_config.m_inputSampleRate, m_config.m_afBandwidth); m_interpolatorDistanceRemain = (Real) m_config.m_inputSampleRate / m_config.m_audioSampleRate; m_interpolatorDistance = (Real) m_config.m_inputSampleRate / (Real) m_config.m_audioSampleRate; m_interpolatorStereo.create(16, m_config.m_inputSampleRate, m_config.m_afBandwidth); m_interpolatorStereoDistanceRemain = (Real) m_config.m_inputSampleRate / m_config.m_audioSampleRate; m_interpolatorStereoDistance = (Real) m_config.m_inputSampleRate / (Real) m_config.m_audioSampleRate; m_interpolatorRDS.create(4, m_config.m_inputSampleRate, 600.0); m_interpolatorRDSDistanceRemain = (Real) m_config.m_inputSampleRate / 250000.0; m_interpolatorRDSDistance = (Real) m_config.m_inputSampleRate / 250000.0; m_settingsMutex.unlock(); } if((m_config.m_inputSampleRate != m_running.m_inputSampleRate) || (m_config.m_rfBandwidth != m_running.m_rfBandwidth) || (m_config.m_inputFrequencyOffset != m_running.m_inputFrequencyOffset)) { m_settingsMutex.lock(); Real lowCut = -(m_config.m_rfBandwidth / 2.0) / m_config.m_inputSampleRate; Real hiCut = (m_config.m_rfBandwidth / 2.0) / m_config.m_inputSampleRate; m_rfFilter->create_filter(lowCut, hiCut); m_phaseDiscri.setFMScaling(m_config.m_inputSampleRate / m_fmExcursion); m_settingsMutex.unlock(); qDebug() << "BFMDemod::handleMessage: m_rfFilter->create_filter: sampleRate: " << m_config.m_inputSampleRate << " lowCut: " << lowCut * m_config.m_inputSampleRate << " hiCut: " << hiCut * m_config.m_inputSampleRate; } if((m_config.m_afBandwidth != m_running.m_afBandwidth) || (m_config.m_audioSampleRate != m_running.m_audioSampleRate)) { m_settingsMutex.lock(); qDebug() << "BFMDemod::handleMessage: m_lowpass.create"; m_lowpass.create(21, m_config.m_audioSampleRate, m_config.m_afBandwidth); m_settingsMutex.unlock(); } if(m_config.m_squelch != m_running.m_squelch) { qDebug() << "BFMDemod::handleMessage: set m_squelchLevel"; m_squelchLevel = std::pow(10.0, m_config.m_squelch / 20.0); m_squelchLevel *= m_squelchLevel; } if (m_config.m_audioSampleRate != m_running.m_audioSampleRate) { m_deemphasisFilterX.configure(default_deemphasis * m_config.m_audioSampleRate * 1.0e-6); m_deemphasisFilterY.configure(default_deemphasis * m_config.m_audioSampleRate * 1.0e-6); } m_running.m_inputSampleRate = m_config.m_inputSampleRate; m_running.m_inputFrequencyOffset = m_config.m_inputFrequencyOffset; m_running.m_rfBandwidth = m_config.m_rfBandwidth; m_running.m_afBandwidth = m_config.m_afBandwidth; m_running.m_squelch = m_config.m_squelch; m_running.m_volume = m_config.m_volume; m_running.m_audioSampleRate = m_config.m_audioSampleRate; m_running.m_audioStereo = m_config.m_audioStereo; m_running.m_lsbStereo = m_config.m_lsbStereo; m_running.m_showPilot = m_config.m_showPilot; m_running.m_rdsActive = m_config.m_rdsActive; }