/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "bladerf2/devicebladerf2shared.h" #include "dsp/samplemofifo.h" #include "bladerf2mothread.h" BladeRF2MOThread::BladeRF2MOThread(struct bladerf* dev, QObject* parent) : QThread(parent), m_running(false), m_dev(dev), m_log2Interp(0) { qDebug("BladeRF2MOThread::BladeRF2MOThread"); m_buf = new qint16[2*DeviceBladeRF2::blockSize*2]; } BladeRF2MOThread::~BladeRF2MOThread() { qDebug("BladeRF2MOThread::~BladeRF2MOThread"); if (m_running) { stopWork(); } delete[] m_buf; } void BladeRF2MOThread::startWork() { m_startWaitMutex.lock(); start(); while(!m_running) { m_startWaiter.wait(&m_startWaitMutex, 100); } m_startWaitMutex.unlock(); } void BladeRF2MOThread::stopWork() { m_running = false; wait(); } void BladeRF2MOThread::run() { int res; m_running = true; m_startWaiter.wakeAll(); int status; status = bladerf_sync_config(m_dev, BLADERF_TX_X2, BLADERF_FORMAT_SC16_Q11, 128, 16384, 32, 1500); if (status < 0) { qCritical("BladeRF2MOThread::run: cannot configure streams: %s", bladerf_strerror(status)); } else { qDebug("BladeRF2MOThread::run: start running loop"); while (m_running) { callback(m_buf, DeviceBladeRF2::blockSize); res = bladerf_sync_tx(m_dev, m_buf, DeviceBladeRF2::blockSize*2, 0, 1500); if (res < 0) { qCritical("BladeRF2MOThread::run sync Rx error: %s", bladerf_strerror(res)); break; } } qDebug("BladeRF2MOThread::run: stop running loop"); } m_running = false; } void BladeRF2MOThread::setLog2Interpolation(unsigned int log2Interp) { qDebug("BladeRF2MOThread::setLog2Interpolation: %u", log2Interp); m_log2Interp = log2Interp; } unsigned int BladeRF2MOThread::getLog2Interpolation() const { return m_log2Interp; } void BladeRF2MOThread::setFcPos(int fcPos) { m_fcPos = fcPos; } int BladeRF2MOThread::getFcPos() const { return m_fcPos; } void BladeRF2MOThread::callback(qint16* buf, qint32 samplesPerChannel) { unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End; m_sampleFifo->readSync(samplesPerChannel/(1< decim=16). len is a number of samples (not a number of I or Q) void BladeRF2MOThread::callbackPart(qint16* buf, qint32 nSamples, int iBegin) { for (unsigned int channel = 0; channel < 2; channel++) { SampleVector::iterator begin = m_sampleFifo->getData(channel).begin() + iBegin; if (m_log2Interp == 0) { m_interpolators[channel].interpolate1(&begin, &buf[channel*2*nSamples], 2*nSamples); } else { if (m_fcPos == 0) // Infra { switch (m_log2Interp) { case 1: m_interpolators[channel].interpolate2_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 2: m_interpolators[channel].interpolate4_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 3: m_interpolators[channel].interpolate8_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 4: m_interpolators[channel].interpolate16_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 5: m_interpolators[channel].interpolate32_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 6: m_interpolators[channel].interpolate64_inf(&begin, &buf[channel*2*nSamples], 2*nSamples); break; default: break; } } else if (m_fcPos == 1) // Supra { switch (m_log2Interp) { case 1: m_interpolators[channel].interpolate2_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 2: m_interpolators[channel].interpolate4_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 3: m_interpolators[channel].interpolate8_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 4: m_interpolators[channel].interpolate16_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 5: m_interpolators[channel].interpolate32_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 6: m_interpolators[channel].interpolate64_sup(&begin, &buf[channel*2*nSamples], 2*nSamples); break; default: break; } } else if (m_fcPos == 2) // Center { switch (m_log2Interp) { case 1: m_interpolators[channel].interpolate2_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 2: m_interpolators[channel].interpolate4_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 3: m_interpolators[channel].interpolate8_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 4: m_interpolators[channel].interpolate16_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 5: m_interpolators[channel].interpolate32_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; case 6: m_interpolators[channel].interpolate64_cen(&begin, &buf[channel*2*nSamples], 2*nSamples); break; default: break; } } } } }