/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany // // written by Christian Daniel // // (c) 2014 Modified by John Greb // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "audio/audiooutput.h" #include "dsp/dspengine.h" #include "dsp/downchannelizer.h" #include "dsp/threadedbasebandsamplesink.h" #include "dsp/dspcommands.h" #include "device/devicesourceapi.h" #include "util/db.h" #include "ssbdemod.h" MESSAGE_CLASS_DEFINITION(SSBDemod::MsgConfigureSSBDemod, Message) MESSAGE_CLASS_DEFINITION(SSBDemod::MsgConfigureSSBDemodPrivate, Message) MESSAGE_CLASS_DEFINITION(SSBDemod::MsgConfigureChannelizer, Message) const QString SSBDemod::m_channelIdURI = "de.maintech.sdrangelove.channel.ssb"; const QString SSBDemod::m_channelId = "SSBDemod"; const int SSBDemod::m_udpBlockSize = 512; SSBDemod::SSBDemod(DeviceSourceAPI *deviceAPI) : ChannelSinkAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_audioBinaual(false), m_audioFlipChannels(false), m_dsb(false), m_audioMute(false), m_agc(12000, agcTarget, 1e-2), m_agcActive(false), m_agcClamping(false), m_agcNbSamples(12000), m_agcPowerThreshold(1e-2), m_agcThresholdGate(0), m_audioActive(false), m_sampleSink(0), m_audioFifo(24000), m_settingsMutex(QMutex::Recursive) { setObjectName(m_channelId); m_Bandwidth = 5000; m_LowCutoff = 300; m_volume = 2.0; m_spanLog2 = 3; m_inputSampleRate = 48000; m_inputFrequencyOffset = 0; m_audioSampleRate = DSPEngine::instance()->getAudioSampleRate(); m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_undersampleCount = 0; m_sum = 0; m_usb = true; m_magsq = 0.0f; m_magsqSum = 0.0f; m_magsqPeak = 0.0f; m_magsqCount = 0; m_agc.setClampMax(SDR_RX_SCALED*SDR_RX_SCALED); m_agc.setClamping(m_agcClamping); SSBFilter = new fftfilt(m_LowCutoff / m_audioSampleRate, m_Bandwidth / m_audioSampleRate, ssbFftLen); DSBFilter = new fftfilt((2.0f * m_Bandwidth) / m_audioSampleRate, 2 * ssbFftLen); DSPEngine::instance()->addAudioSink(&m_audioFifo); m_udpBufferAudio = new UDPSink(this, m_udpBlockSize, m_settings.m_udpPort); m_channelizer = new DownChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); m_deviceAPI->addThreadedSink(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); applySettings(m_settings, true); } SSBDemod::~SSBDemod() { if (SSBFilter) delete SSBFilter; if (DSBFilter) delete DSBFilter; DSPEngine::instance()->removeAudioSink(&m_audioFifo); m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; delete m_udpBufferAudio; } void SSBDemod::configure(MessageQueue* messageQueue, Real Bandwidth, Real LowCutoff, Real volume, int spanLog2, bool audioBinaural, bool audioFlipChannel, bool dsb, bool audioMute, bool agc, bool agcClamping, int agcTimeLog2, int agcPowerThreshold, int agcThresholdGate) { Message* cmd = MsgConfigureSSBDemodPrivate::create( Bandwidth, LowCutoff, volume, spanLog2, audioBinaural, audioFlipChannel, dsb, audioMute, agc, agcClamping, agcTimeLog2, agcPowerThreshold, agcThresholdGate); messageQueue->push(cmd); } void SSBDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly __attribute__((unused))) { Complex ci; fftfilt::cmplx *sideband; int n_out; m_settingsMutex.lock(); int decim = 1<<(m_spanLog2 - 1); unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1) for(SampleVector::const_iterator it = begin; it < end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if(m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { if (m_dsb) { n_out = DSBFilter->runDSB(ci, &sideband); } else { n_out = SSBFilter->runSSB(ci, &sideband, m_usb); } m_interpolatorDistanceRemain += m_interpolatorDistance; } else { n_out = 0; } for (int i = 0; i < n_out; i++) { // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display // smart decimation with bit gain using float arithmetic (23 bits significand) m_sum += sideband[i]; if (!(m_undersampleCount++ & decim_mask)) { Real avgr = m_sum.real() / decim; Real avgi = m_sum.imag() / decim; m_magsq = (avgr * avgr + avgi * avgi) / (SDR_RX_SCALED*SDR_RX_SCALED); m_magsqSum += m_magsq; if (m_magsq > m_magsqPeak) { m_magsqPeak = m_magsq; } m_magsqCount++; if (!m_dsb & !m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(avgi, avgr)); } else { m_sampleBuffer.push_back(Sample(avgr, avgi)); } m_sum.real(0.0); m_sum.imag(0.0); } double agcVal = m_agcActive ? m_agc.feedAndGetValue(sideband[i]) : 10.0; // 10.0 for 3276.8, 1.0 for 327.68 m_audioActive = agcVal != 0.0; if (m_audioMute) { m_audioBuffer[m_audioBufferFill].r = 0; m_audioBuffer[m_audioBufferFill].l = 0; if (m_settings.m_copyAudioToUDP) { m_udpBufferAudio->write(0); } } else { if (m_audioBinaual) { if (m_audioFlipChannels) { m_audioBuffer[m_audioBufferFill].r = (qint16)(sideband[i].imag() * m_volume * agcVal); m_audioBuffer[m_audioBufferFill].l = (qint16)(sideband[i].real() * m_volume * agcVal); } else { m_audioBuffer[m_audioBufferFill].r = (qint16)(sideband[i].real() * m_volume * agcVal); m_audioBuffer[m_audioBufferFill].l = (qint16)(sideband[i].imag() * m_volume * agcVal); } if (m_settings.m_copyAudioToUDP) { m_udpBufferAudio->write(m_audioBuffer[m_audioBufferFill].r + m_audioBuffer[m_audioBufferFill].l); } } else { Real demod = (sideband[i].real() + sideband[i].imag()) * 0.7; qint16 sample = (qint16)(demod * m_volume * agcVal); m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; if (m_settings.m_copyAudioToUDP) { m_udpBufferAudio->write(sample); } } } ++m_audioBufferFill; if (m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 10); if (res != m_audioBufferFill) { qDebug("SSBDemod::feed: %u/%u samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } } } uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 10); if (res != m_audioBufferFill) { qDebug("SSBDemod::feed: %u/%u tail samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; if (m_sampleSink != 0) { m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_dsb); } m_sampleBuffer.clear(); m_settingsMutex.unlock(); } void SSBDemod::start() { applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); } void SSBDemod::stop() { } bool SSBDemod::handleMessage(const Message& cmd) { if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; qDebug("SSBDemod::handleMessage: MsgChannelizerNotification: m_sampleRate"); applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset()); return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; qDebug() << "SSBDemod::handleMessage: MsgConfigureChannelizer: sampleRate: " << cfg.getSampleRate() << " centerFrequency: " << cfg.getCenterFrequency(); m_channelizer->configure(m_channelizer->getInputMessageQueue(), cfg.getSampleRate(), cfg.getCenterFrequency()); return true; } else if (MsgConfigureSSBDemod::match(cmd)) { MsgConfigureSSBDemod& cfg = (MsgConfigureSSBDemod&) cmd; qDebug("SSBDemod::handleMessage: MsgConfigureSSBDemod"); applySettings(cfg.getSettings(), cfg.getForce()); return true; } else if (DSPSignalNotification::match(cmd)) { return true; } else { if(m_sampleSink != 0) { return m_sampleSink->handleMessage(cmd); } else { return false; } } } void SSBDemod::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force) { qDebug() << "SSBDemod::applyChannelSettings:" << " inputSampleRate: " << inputSampleRate << " inputFrequencyOffset: " << inputFrequencyOffset; if ((m_inputFrequencyOffset != inputFrequencyOffset) || (m_inputSampleRate != inputSampleRate) || force) { m_nco.setFreq(-inputFrequencyOffset, inputSampleRate); } if ((m_inputSampleRate != inputSampleRate) || force) { m_settingsMutex.lock(); m_interpolator.create(16, inputSampleRate, m_Bandwidth * 1.5f, 2.0f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) inputSampleRate / (Real) m_settings.m_audioSampleRate; m_settingsMutex.unlock(); } m_inputSampleRate = inputSampleRate; m_inputFrequencyOffset = inputFrequencyOffset; } void SSBDemod::applySettings(const SSBDemodSettings& settings, bool force) { qDebug() << "SSBDemod::applySettings:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_lowCutoff: " << settings.m_lowCutoff << " m_volume: " << settings.m_volume << " m_spanLog2: " << settings.m_spanLog2 << " m_audioBinaual: " << settings.m_audioBinaural << " m_audioFlipChannels: " << settings.m_audioFlipChannels << " m_dsb: " << settings.m_dsb << " m_audioMute: " << settings.m_audioMute << " m_copyAudioToUDP: " << settings.m_copyAudioToUDP << " m_agcActive: " << settings.m_agc << " m_agcClamping: " << settings.m_agcClamping << " m_agcTimeLog2: " << settings.m_agcTimeLog2 << " agcPowerThreshold: " << settings.m_agcPowerThreshold << " agcThresholdGate: " << settings.m_agcThresholdGate; if((m_settings.m_rfBandwidth != settings.m_rfBandwidth) || (m_settings.m_lowCutoff != settings.m_lowCutoff) || (m_settings.m_audioSampleRate != settings.m_audioSampleRate) || force) { float band, lowCutoff; band = settings.m_rfBandwidth; lowCutoff = settings.m_lowCutoff; m_audioSampleRate = settings.m_audioSampleRate; if (band < 0) { band = -band; lowCutoff = -lowCutoff; m_usb = false; } else { m_usb = true; } if (band < 100.0f) { band = 100.0f; lowCutoff = 0; } m_Bandwidth = band; m_LowCutoff = lowCutoff; m_settingsMutex.lock(); m_interpolator.create(16, m_inputSampleRate, m_Bandwidth * 1.5f, 2.0f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_inputSampleRate / (Real) m_settings.m_audioSampleRate; SSBFilter->create_filter(m_LowCutoff / (float) m_audioSampleRate, m_Bandwidth / (float) m_audioSampleRate); DSBFilter->create_dsb_filter((2.0f * m_Bandwidth) / (float) m_audioSampleRate); m_settingsMutex.unlock(); } if ((m_settings.m_volume != settings.m_volume) || force) { m_volume = settings.m_volume; m_volume /= 4.0; // for 3276.8 } if ((m_settings.m_agcTimeLog2 != settings.m_agcTimeLog2) || (m_settings.m_agcPowerThreshold != settings.m_agcPowerThreshold) || (m_settings.m_agcThresholdGate != settings.m_agcThresholdGate) || (m_settings.m_agcClamping != settings.m_agcClamping) || force) { int agcNbSamples = 48 * (1<setAddress(const_cast(settings.m_udpAddress)); m_udpBufferAudio->setPort(settings.m_udpPort); } m_spanLog2 = settings.m_spanLog2; m_audioBinaual = settings.m_audioBinaural; m_audioFlipChannels = settings.m_audioFlipChannels; m_dsb = settings.m_dsb; m_audioMute = settings.m_audioMute; m_agcActive = settings.m_agc; m_settings = settings; } QByteArray SSBDemod::serialize() const { return m_settings.serialize(); } bool SSBDemod::deserialize(const QByteArray& data) { if (m_settings.deserialize(data)) { MsgConfigureSSBDemod *msg = MsgConfigureSSBDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return true; } else { m_settings.resetToDefaults(); MsgConfigureSSBDemod *msg = MsgConfigureSSBDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return false; } }