/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2018-2020, 2022 Edouard Griffiths, F4EXB // // Copyright (C) 2021 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "util/simpleserializer.h" #include "settings/serializable.h" #include "doa2settings.h" DOA2Settings::DOA2Settings() : m_channelMarker(nullptr), m_scopeGUI(nullptr), m_rollupState(nullptr) { resetToDefaults(); } void DOA2Settings::resetToDefaults() { m_correlationType = CorrelationFFT; m_rgbColor = QColor(250, 120, 120).rgb(); m_title = "DOA 2 sources"; m_log2Decim = 0; m_filterChainHash = 0; m_phase = 0; m_reverseAPIAddress = "127.0.0.1"; m_reverseAPIPort = 8888; m_reverseAPIDeviceIndex = 0; m_reverseAPIChannelIndex = 0; m_workspaceIndex = 0; m_hidden = false; m_antennaAz = 0; m_basebandDistance = 500; m_squelchdB = -50; m_fftAveragingIndex = 0; } QByteArray DOA2Settings::serialize() const { SimpleSerializer s(1); s.writeS32(2, (int) m_correlationType); s.writeU32(3, m_rgbColor); s.writeString(4, m_title); s.writeU32(5, m_log2Decim); s.writeU32(6, m_filterChainHash); s.writeBool(7, m_useReverseAPI); s.writeString(8, m_reverseAPIAddress); s.writeU32(9, m_reverseAPIPort); s.writeU32(10, m_reverseAPIDeviceIndex); s.writeU32(11, m_reverseAPIChannelIndex); s.writeS32(12, m_phase); s.writeS32(13,m_workspaceIndex); s.writeBlob(14, m_geometryBytes); s.writeBool(15, m_hidden); s.writeS32(16, m_antennaAz); s.writeU32(17, m_basebandDistance); s.writeS32(18, m_squelchdB); s.writeS32(19, m_fftAveragingIndex); if (m_scopeGUI) { s.writeBlob(21, m_scopeGUI->serialize()); } if (m_channelMarker) { s.writeBlob(22, m_channelMarker->serialize()); } if (m_rollupState) { s.writeBlob(23, m_rollupState->serialize()); } return s.final(); } bool DOA2Settings::deserialize(const QByteArray& data) { SimpleDeserializer d(data); if(!d.isValid()) { resetToDefaults(); return false; } if(d.getVersion() == 1) { QByteArray bytetmp; int tmp; quint32 utmp; d.readS32(2, &tmp, 0); m_correlationType = (CorrelationType) tmp; d.readU32(3, &m_rgbColor); d.readString(4, &m_title, "DOA 2 sources"); d.readU32(5, &utmp, 0); m_log2Decim = utmp > 6 ? 6 : utmp; d.readU32(6, &m_filterChainHash, 0); d.readBool(7, &m_useReverseAPI, false); d.readString(8, &m_reverseAPIAddress, "127.0.0.1"); d.readU32(9, &utmp, 0); if ((utmp > 1023) && (utmp < 65535)) { m_reverseAPIPort = utmp; } else { m_reverseAPIPort = 8888; } d.readU32(10, &utmp, 0); m_reverseAPIDeviceIndex = utmp > 99 ? 99 : utmp; d.readU32(11, &utmp, 0); m_reverseAPIChannelIndex = utmp > 99 ? 99 : utmp; d.readS32(12, &tmp, 0); m_phase = tmp < -180 ? -180 : tmp > 180 ? 180 : tmp; d.readS32(13, &m_workspaceIndex); d.readBlob(14, &m_geometryBytes); d.readBool(15, &m_hidden, false); d.readS32(16, &tmp, 0); m_antennaAz = tmp < 0 ? 0 : tmp > 359 ? 359 : tmp; d.readU32(17, &utmp, 500); m_basebandDistance = utmp == 0 ? 1 : utmp; d.readS32(18, &m_squelchdB, -50); d.readS32(19, &tmp, 0); m_fftAveragingIndex = tmp < 0 ? 0 : tmp > 3*m_averagingMaxExponent + 3 ? 3*m_averagingMaxExponent + 3: tmp; if (m_scopeGUI) { d.readBlob(21, &bytetmp); m_scopeGUI->deserialize(bytetmp); } if (m_channelMarker) { d.readBlob(22, &bytetmp); m_channelMarker->deserialize(bytetmp); } if (m_rollupState) { d.readBlob(23, &bytetmp); m_rollupState->deserialize(bytetmp); } return true; } else { resetToDefaults(); return false; } } void DOA2Settings::applySettings(const QStringList& settingsKeys, const DOA2Settings& settings) { if (settingsKeys.contains("correlationType")) { m_correlationType = settings.m_correlationType; } if (settingsKeys.contains("rgbColor")) { m_rgbColor = settings.m_rgbColor; } if (settingsKeys.contains("title")) { m_title = settings.m_title; } if (settingsKeys.contains("log2Decim")) { m_log2Decim = settings.m_log2Decim; } if (settingsKeys.contains("filterChainHash")) { m_filterChainHash = settings.m_filterChainHash; } if (settingsKeys.contains("phase")) { m_phase = settings.m_phase; } if (settingsKeys.contains("antennaAz")) { m_antennaAz = settings.m_antennaAz; } if (settingsKeys.contains("basebandDistance")) { m_basebandDistance = settings.m_basebandDistance; } if (settingsKeys.contains("squelchdB")) { m_squelchdB = settings.m_squelchdB; } if (settingsKeys.contains("fftAveragingIndex")) { m_fftAveragingIndex = settings.m_fftAveragingIndex; } if (settingsKeys.contains("useReverseAPI")) { m_useReverseAPI = settings.m_useReverseAPI; } if (settingsKeys.contains("reverseAPIAddress")) { m_reverseAPIAddress = settings.m_reverseAPIAddress; } if (settingsKeys.contains("reverseAPIPort")) { m_reverseAPIPort = settings.m_reverseAPIPort; } if (settingsKeys.contains("reverseAPIDeviceIndex")) { m_reverseAPIDeviceIndex = settings.m_reverseAPIDeviceIndex; } if (settingsKeys.contains("reverseAPIChannelIndex")) { m_reverseAPIChannelIndex = settings.m_reverseAPIChannelIndex; } if (settingsKeys.contains("workspaceIndex")) { m_workspaceIndex = settings.m_workspaceIndex; } if (settingsKeys.contains("geometryBytes")) { m_geometryBytes = settings.m_geometryBytes; } if (settingsKeys.contains("hidden")) { m_hidden = settings.m_hidden; } } QString DOA2Settings::getDebugString(const QStringList& settingsKeys, bool force) const { std::ostringstream ostr; if (settingsKeys.contains("correlationType") || force) { ostr << " m_correlationType: " << (int)m_correlationType; } if (settingsKeys.contains("rgbColor") || force) { ostr << " m_rgbColor: " << m_rgbColor; } if (settingsKeys.contains("title") || force) { ostr << " m_title: " << m_title.toStdString(); } if (settingsKeys.contains("log2Decim") || force) { ostr << " m_log2Decim: " << m_log2Decim; } if (settingsKeys.contains("filterChainHash") || force) { ostr << " m_filterChainHash: " << m_filterChainHash; } if (settingsKeys.contains("phase") || force) { ostr << " m_phase: " << m_phase; } if (settingsKeys.contains("antennaAz") || force) { ostr << " m_antennaAz: " << m_antennaAz; } if (settingsKeys.contains("basebandDistance") || force) { ostr << " m_basebandDistance: " << m_basebandDistance; } if (settingsKeys.contains("squelchdB") || force) { ostr << " m_squelchdB: " << m_squelchdB; } if (settingsKeys.contains("fftAveragingIndex") || force) { ostr << " m_fftAveragingIndex: " << m_fftAveragingIndex; } if (settingsKeys.contains("useReverseAPI") || force) { ostr << " m_useReverseAPI: " << m_useReverseAPI; } if (settingsKeys.contains("reverseAPIAddress") || force) { ostr << " m_reverseAPIAddress: " << m_reverseAPIAddress.toStdString(); } if (settingsKeys.contains("reverseAPIPort") || force) { ostr << " m_reverseAPIPort: " << m_reverseAPIPort; } if (settingsKeys.contains("reverseAPIDeviceIndex") || force) { ostr << " m_reverseAPIDeviceIndex: " << m_reverseAPIDeviceIndex; } if (settingsKeys.contains("reverseAPIChannelIndex") || force) { ostr << " m_reverseAPIChannelIndex: " << m_reverseAPIChannelIndex; } if (settingsKeys.contains("workspaceIndex") || force) { ostr << " m_workspaceIndex: " << m_workspaceIndex; } if (settingsKeys.contains("hidden") || force) { ostr << " m_hidden: " << m_hidden; } return QString(ostr.str().c_str()); } int DOA2Settings::getAveragingValue(int averagingIndex) { if (averagingIndex <= 0) { return 1; } int v = averagingIndex - 1; int m = pow(10.0, v/3 > m_averagingMaxExponent ? m_averagingMaxExponent : v/3); int x = 1; if (v % 3 == 0) { x = 2; } else if (v % 3 == 1) { x = 5; } else if (v % 3 == 2) { x = 10; } return x * m; } int DOA2Settings::getAveragingIndex(int averagingValue) { if (averagingValue <= 1) { return 0; } int v = averagingValue; int j = 0; for (int i = 0; i <= m_averagingMaxExponent; i++) { if (v < 20) { if (v < 2) { j = 0; } else if (v < 5) { j = 1; } else if (v < 10) { j = 2; } else { j = 3; } return 3*i + j; } v /= 10; } return 3*m_averagingMaxExponent + 3; }