/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2018 F4EXB // // written by Edouard Griffiths // // // // See: http://liquidsdr.org/blog/pll-howto/ // // Fixed filter registers saturation // // Added order for PSK locking. This brilliant idea actually comes from this // // post: https://www.dsprelated.com/showthread/comp.dsp/36356-1.php // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "phaselockcomplex.h" PhaseLockComplex::PhaseLockComplex() : m_a1(1.0), m_a2(1.0), m_b0(1.0), m_b1(1.0), m_b2(1.0), m_v0(0.0), m_v1(0.0), m_v2(0.0), m_deltaPhi(0.0), m_phiHat(0.0), m_phiHatPrev(0.0), m_phiHat1(0.0), m_phiHat2(0.0), m_dPhiHatAccum(0.0), m_phiHatCount(0), m_y(1.0, 0.0), m_p(1.0, 0.0), m_yRe(1.0), m_yIm(0.0), m_freq(0.0), m_freqPrev(0.0), m_lock(0.0), m_lockCount(0), m_pskOrder(1), m_lockTime1(480), m_lockTime(2400), m_lockTimef(2400.0f), m_lockThreshold(4.8f), m_avgF(2400) { } void PhaseLockComplex::computeCoefficients(Real wn, Real zeta, Real K) { double t1 = K/(wn*wn); // double t2 = 2*zeta/wn - 1/K; // double b0 = 2*K*(1.+t2/2.0f); double b1 = 2*K*2.; double b2 = 2*K*(1.-t2/2.0f); double a0 = 1 + t1/2.0f; double a1 = -t1; double a2 = -1 + t1/2.0f; qDebug("PhaseLockComplex::computeCoefficients: b_raw: %f %f %f", b0, b1, b2); qDebug("PhaseLockComplex::computeCoefficients: a_raw: %f %f %f", a0, a1, a2); m_b0 = b0 / a0; m_b1 = b1 / a0; m_b2 = b2 / a0; // a0 = 1.0 is implied m_a1 = a1 / a0; m_a2 = a2 / a0; qDebug("PhaseLockComplex::computeCoefficients: b: %f %f %f", m_b0, m_b1, m_b2); qDebug("PhaseLockComplex::computeCoefficients: a: 1.0 %f %f", m_a1, m_a2); reset(); } void PhaseLockComplex::setPskOrder(unsigned int order) { m_pskOrder = order > 0 ? order : 1; reset(); } void PhaseLockComplex::setSampleRate(unsigned int sampleRate) { m_lockTime1 = sampleRate / 100; // 10ms for order 1 m_lockTime = sampleRate / 20; // 50ms for order > 1 m_lockTimef = (float) m_lockTime; m_lockThreshold = m_lockTime * 0.00015f; // threshold of 0.002 taking division by lock time into account m_avgF.resize(m_lockTime); reset(); } void PhaseLockComplex::reset() { // reset filter accumulators and phase m_v0 = 0.0f; m_v1 = 0.0f; m_v2 = 0.0f; m_deltaPhi = 0.0f; m_phiHat = 0.0f; m_phiHatPrev = 0.0f; m_phiHat1 = 0.0f; m_phiHat2 = 0.0f; m_dPhiHatAccum = 0.0f; m_phiHatCount = 0; m_y.real(1.0); m_y.imag(0.0); m_p.real(1.0); m_p.imag(0.0); m_yRe = 1.0f; m_yIm = 0.0f; m_freq = 0.0f; m_freqPrev = 0.0f; m_lock = 0.0f; m_lockCount = 0; } void PhaseLockComplex::feed(float re, float im) { m_yRe = cos(m_phiHat); m_yIm = sin(m_phiHat); m_y.real(m_yRe); m_y.imag(m_yIm); std::complex x(re, im); m_deltaPhi = std::arg(x * std::conj(m_y)); // bring phase 0 on any of the PSK symbols if (m_pskOrder > 1) { m_deltaPhi = normalizeAngle(m_pskOrder*m_deltaPhi); } // advance buffer m_v2 = m_v1; // shift center register to upper register m_v1 = m_v0; // shift lower register to center register // compute new lower register m_v0 = m_deltaPhi - m_v1*m_a1 - m_v2*m_a2; // compute new output m_phiHat = m_v0*m_b0 + m_v1*m_b1 + m_v2*m_b2; // prevent saturation if (m_phiHat > 2.0*M_PI) { m_v0 *= (m_phiHat - 2.0*M_PI) / m_phiHat; m_v1 *= (m_phiHat - 2.0*M_PI) / m_phiHat; m_v2 *= (m_phiHat - 2.0*M_PI) / m_phiHat; m_phiHat -= 2.0*M_PI; } if (m_phiHat < -2.0*M_PI) { m_v0 *= (m_phiHat + 2.0*M_PI) / m_phiHat; m_v1 *= (m_phiHat + 2.0*M_PI) / m_phiHat; m_v2 *= (m_phiHat + 2.0*M_PI) / m_phiHat; m_phiHat += 2.0*M_PI; } // lock estimation if (m_pskOrder > 1) { float dPhi = normalizeAngle(m_phiHat - m_phiHatPrev); m_avgF(dPhi); if (m_phiHatCount < (m_lockTime-1)) { m_phiHatCount++; } else { m_freq = m_avgF.asFloat(); float dFreq = m_freq - m_freqPrev; if ((dFreq > -m_lockThreshold) && (dFreq < m_lockThreshold)) { if (m_lockCount < 20) { m_lockCount++; } } else{ if (m_lockCount > 0) { m_lockCount--; } } m_freqPrev = m_freq; m_phiHatCount = 0; } // if (m_phiHatCount < (m_lockTime-1)) // { // m_dPhiHatAccum += dPhi; // re-accumulate phase for differential calculation // m_phiHatCount++; // } // else // { // float dPhi11 = (m_dPhiHatAccum - m_phiHat1); // optimized out division by lock time // float dPhi12 = (m_phiHat1 - m_phiHat2); // m_lock = dPhi11 - dPhi12; // second derivative of phase to get lock status // if ((m_lock > -m_lockThreshold) && (m_lock < m_lockThreshold)) // includes re-multiplication by lock time // { // if (m_lockCount < 20) { // [0..20] // m_lockCount++; // } // } // else // { // if (m_lockCount > 0) { // m_lockCount -= 2; // } // } // m_phiHat2 = m_phiHat1; // m_phiHat1 = m_dPhiHatAccum; // m_dPhiHatAccum = 0.0f; // m_phiHatCount = 0; // } // m_phiHatPrev = m_phiHat; } else { m_freq = (m_phiHat - m_phiHatPrev) / (2.0*M_PI); if (m_freq < -1.0f) { m_freq += 2.0f; } else if (m_freq > 1.0f) { m_freq -= 2.0f; } float dFreq = m_freq - m_freqPrev; if ((dFreq > -0.01) && (dFreq < 0.01)) { if (m_lockCount < (m_lockTime1-1)) { // [0..479] m_lockCount++; } } else { m_lockCount = 0; } m_phiHatPrev = m_phiHat; m_freqPrev = m_freq; } } float PhaseLockComplex::normalizeAngle(float angle) { while (angle <= -M_PI) { angle += 2.0*M_PI; } while (angle > M_PI) { angle -= 2.0*M_PI; } return angle; }