/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include "SWGChannelSettings.h" #include "SWGUDPSinkSettings.h" #include "SWGChannelReport.h" #include "SWGUDPSinkReport.h" #include "dsp/basebandsamplesink.h" #include "dsp/dspengine.h" #include "dsp/dspcommands.h" #include "dsp/devicesamplemimo.h" #include "device/deviceapi.h" #include "util/db.h" #include "udpsinksink.h" const Real UDPSinkSink::m_agcTarget = 16384.0f; UDPSinkSink::UDPSinkSink() : m_channelSampleRate(48000), m_channelFrequencyOffset(0), m_outMovingAverage(480, 1e-10), m_inMovingAverage(480, 1e-10), m_amMovingAverage(1200, 1e-10), m_audioFifo(24000), m_spectrum(nullptr), m_spectrumEnabled(false), m_spectrumPositiveOnly(false), m_squelch(1e-6), m_squelchOpen(false), m_squelchOpenCount(0), m_squelchCloseCount(0), m_squelchGate(4800), m_squelchRelease(4800), m_agc(9600, m_agcTarget, 1e-6) { m_udpBuffer16 = new UDPSinkUtil(this, udpBlockSize, m_settings.m_udpPort); m_udpBufferMono16 = new UDPSinkUtil(this, udpBlockSize, m_settings.m_udpPort); m_udpBuffer24 = new UDPSinkUtil(this, udpBlockSize, m_settings.m_udpPort); m_audioSocket = new QUdpSocket(this); m_udpAudioBuf = new char[m_udpAudioPayloadSize]; m_audioBuffer.resize(1<<9); m_audioBufferFill = 0; m_nco.setFreq(0, m_channelSampleRate); m_interpolator.create(16, m_channelSampleRate, m_settings.m_rfBandwidth / 2.0); m_sampleDistanceRemain = m_channelSampleRate / m_settings.m_outputSampleRate; m_spectrumEnabled = false; m_nextSSBId = 0; m_nextS16leId = 0; m_last = 0; m_this = 0; m_scale = 0; m_magsq = 0; m_inMagsq = 0; UDPFilter = new fftfilt(0.0, (m_settings.m_rfBandwidth / 2.0) / m_settings.m_outputSampleRate, udpBlockSize); m_phaseDiscri.setFMScaling((float) m_settings. m_outputSampleRate / (2.0f * m_settings.m_fmDeviation)); if (m_audioSocket->bind(QHostAddress::LocalHost, m_settings.m_audioPort)) { qDebug("UDPSinkSink::UDPSinkSink: bind audio socket to port %d", m_settings.m_audioPort); connect(m_audioSocket, SIGNAL(readyRead()), this, SLOT(audioReadyRead()), Qt::QueuedConnection); } else { qWarning("UDPSinkSink::UDPSinkSink: cannot bind audio port"); } m_agc.setClampMax(SDR_RX_SCALED*SDR_RX_SCALED); m_agc.setClamping(true); //DSPEngine::instance()->addAudioSink(&m_audioFifo); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); applySettings(m_settings, true); } UDPSinkSink::~UDPSinkSink() { delete m_audioSocket; delete m_udpBuffer24; delete m_udpBuffer16; delete m_udpBufferMono16; delete[] m_udpAudioBuf; delete UDPFilter; } void UDPSinkSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { Complex ci; fftfilt::cmplx* sideband; double l, r; m_sampleBuffer.clear(); for(SampleVector::const_iterator it = begin; it < end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if(m_interpolator.decimate(&m_sampleDistanceRemain, c, &ci)) { double inMagSq; double agcFactor = 1.0; if ((m_settings.m_agc) && (m_settings.m_sampleFormat != UDPSinkSettings::FormatNFM) && (m_settings.m_sampleFormat != UDPSinkSettings::FormatNFMMono) && (m_settings.m_sampleFormat != UDPSinkSettings::FormatIQ16) && (m_settings.m_sampleFormat != UDPSinkSettings::FormatIQ24)) { agcFactor = m_agc.feedAndGetValue(ci); inMagSq = m_agc.getMagSq(); } else { inMagSq = ci.real()*ci.real() + ci.imag()*ci.imag(); } m_inMovingAverage.feed(inMagSq / (SDR_RX_SCALED*SDR_RX_SCALED)); m_inMagsq = m_inMovingAverage.average(); Sample ss(ci.real(), ci.imag()); m_sampleBuffer.push_back(ss); m_sampleDistanceRemain += m_channelSampleRate / m_settings.m_outputSampleRate; calculateSquelch(m_inMagsq); if (m_settings.m_sampleFormat == UDPSinkSettings::FormatLSB) // binaural LSB { ci *= agcFactor; int n_out = UDPFilter->runSSB(ci, &sideband, false); if (n_out) { for (int i = 0; i < n_out; i++) { l = m_squelchOpen ? sideband[i].real() * m_settings.m_gain : 0; r = m_squelchOpen ? sideband[i].imag() * m_settings.m_gain : 0; udpWrite(l, r); m_outMovingAverage.feed((l*l + r*r) / (SDR_RX_SCALED*SDR_RX_SCALED)); } } } if (m_settings.m_sampleFormat == UDPSinkSettings::FormatUSB) // binaural USB { ci *= agcFactor; int n_out = UDPFilter->runSSB(ci, &sideband, true); if (n_out) { for (int i = 0; i < n_out; i++) { l = m_squelchOpen ? sideband[i].real() * m_settings.m_gain : 0; r = m_squelchOpen ? sideband[i].imag() * m_settings.m_gain : 0; udpWrite(l, r); m_outMovingAverage.feed((l*l + r*r) / (SDR_RX_SCALED*SDR_RX_SCALED)); } } } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatNFM) { Real discri = m_squelchOpen ? m_phaseDiscri.phaseDiscriminator(ci) * m_settings.m_gain : 0; udpWriteNorm(discri, discri); m_outMovingAverage.feed(discri*discri); } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatNFMMono) { Real discri = m_squelchOpen ? m_phaseDiscri.phaseDiscriminator(ci) * m_settings.m_gain : 0; udpWriteNormMono(discri); m_outMovingAverage.feed(discri*discri); } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatLSBMono) // Monaural LSB { ci *= agcFactor; int n_out = UDPFilter->runSSB(ci, &sideband, false); if (n_out) { for (int i = 0; i < n_out; i++) { l = m_squelchOpen ? (sideband[i].real() + sideband[i].imag()) * 0.7 * m_settings.m_gain : 0; udpWriteMono(l); m_outMovingAverage.feed((l * l) / (SDR_RX_SCALED*SDR_RX_SCALED)); } } } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatUSBMono) // Monaural USB { ci *= agcFactor; int n_out = UDPFilter->runSSB(ci, &sideband, true); if (n_out) { for (int i = 0; i < n_out; i++) { l = m_squelchOpen ? (sideband[i].real() + sideband[i].imag()) * 0.7 * m_settings.m_gain : 0; udpWriteMono(l); m_outMovingAverage.feed((l * l) / (SDR_RX_SCALED*SDR_RX_SCALED)); } } } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatAMMono) { Real amplitude = m_squelchOpen ? sqrt(inMagSq) * agcFactor * m_settings.m_gain : 0; FixReal demod = (FixReal) amplitude; udpWriteMono(demod); m_outMovingAverage.feed((amplitude/SDR_RX_SCALEF)*(amplitude/SDR_RX_SCALEF)); } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatAMNoDCMono) { if (m_squelchOpen) { double demodf = sqrt(inMagSq); m_amMovingAverage.feed(demodf); Real amplitude = (demodf - m_amMovingAverage.average()) * agcFactor * m_settings.m_gain; FixReal demod = (FixReal) amplitude; udpWriteMono(demod); m_outMovingAverage.feed((amplitude/SDR_RX_SCALEF)*(amplitude/SDR_RX_SCALEF)); } else { udpWriteMono(0); m_outMovingAverage.feed(0); } } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatAMBPFMono) { if (m_squelchOpen) { double demodf = sqrt(inMagSq); demodf = m_bandpass.filter(demodf); Real amplitude = demodf * agcFactor * m_settings.m_gain; FixReal demod = (FixReal) amplitude; udpWriteMono(demod); m_outMovingAverage.feed((amplitude/SDR_RX_SCALEF)*(amplitude/SDR_RX_SCALEF)); } else { udpWriteMono(0); m_outMovingAverage.feed(0); } } else // Raw I/Q samples { if (m_squelchOpen) { udpWrite(ci.real() * m_settings.m_gain, ci.imag() * m_settings.m_gain); m_outMovingAverage.feed((inMagSq*m_settings.m_gain*m_settings.m_gain) / (SDR_RX_SCALED*SDR_RX_SCALED)); } else { udpWrite(0, 0); m_outMovingAverage.feed(0); } } m_magsq = m_outMovingAverage.average(); } } //qDebug() << "UDPSink::feed: " << m_sampleBuffer.size() * 4; if ((m_spectrum != 0) && (m_spectrumEnabled)) { m_spectrum->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), m_spectrumPositiveOnly); } } void UDPSinkSink::audioReadyRead() { while (m_audioSocket->hasPendingDatagrams()) { qint64 pendingDataSize = m_audioSocket->pendingDatagramSize(); qint64 udpReadBytes = m_audioSocket->readDatagram(m_udpAudioBuf, pendingDataSize, 0, 0); //qDebug("UDPSink::audioReadyRead: %lld", udpReadBytes); if (m_settings.m_audioActive) { if (m_settings.m_audioStereo) { for (int i = 0; i < udpReadBytes - 3; i += 4) { qint16 l_sample = (qint16) *(&m_udpAudioBuf[i]); qint16 r_sample = (qint16) *(&m_udpAudioBuf[i+2]); m_audioBuffer[m_audioBufferFill].l = l_sample * m_settings.m_volume; m_audioBuffer[m_audioBufferFill].r = r_sample * m_settings.m_volume; ++m_audioBufferFill; if (m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill); if (res != m_audioBufferFill) { qDebug("UDPSinkSink::audioReadyRead: (stereo) lost %u samples", m_audioBufferFill - res); } m_audioBufferFill = 0; } } } else { for (int i = 0; i < udpReadBytes - 1; i += 2) { qint16 sample = (qint16) *(&m_udpAudioBuf[i]); m_audioBuffer[m_audioBufferFill].l = sample * m_settings.m_volume; m_audioBuffer[m_audioBufferFill].r = sample * m_settings.m_volume; ++m_audioBufferFill; if (m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill); if (res != m_audioBufferFill) { qDebug("UDPSinkSink::audioReadyRead: (mono) lost %u samples", m_audioBufferFill - res); } m_audioBufferFill = 0; } } } if (m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill) != m_audioBufferFill) { qDebug("UDPSinkSink::audioReadyRead: lost samples"); } m_audioBufferFill = 0; } } } void UDPSinkSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "UDPSinkSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((channelSampleRate != m_channelSampleRate) || force) { m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.0); m_sampleDistanceRemain = channelSampleRate / m_settings.m_outputSampleRate; } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void UDPSinkSink::applySettings(const UDPSinkSettings& settings, bool force) { qDebug() << "UDPSinkSink::applySettings:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_audioActive: " << settings.m_audioActive << " m_audioStereo: " << settings.m_audioStereo << " m_gain: " << settings.m_gain << " m_volume: " << settings.m_volume << " m_squelchEnabled: " << settings.m_squelchEnabled << " m_squelchdB: " << settings.m_squelchdB << " m_squelchGate" << settings.m_squelchGate << " m_agc" << settings.m_agc << " m_sampleFormat: " << settings.m_sampleFormat << " m_outputSampleRate: " << settings.m_outputSampleRate << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_fmDeviation: " << settings.m_fmDeviation << " m_udpAddressStr: " << settings.m_udpAddress << " m_udpPort: " << settings.m_udpPort << " m_audioPort: " << settings.m_audioPort << " m_streamIndex: " << settings.m_streamIndex << " m_useReverseAPI: " << settings.m_useReverseAPI << " m_reverseAPIAddress: " << settings.m_reverseAPIAddress << " m_reverseAPIPort: " << settings.m_reverseAPIPort << " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex << " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex << " force: " << force; if ((settings.m_audioActive != m_settings.m_audioActive) || force) { if (settings.m_audioActive) { m_audioBufferFill = 0; } } if ((settings.m_inputFrequencyOffset != m_settings.m_inputFrequencyOffset) || (settings.m_rfBandwidth != m_settings.m_rfBandwidth) || (settings.m_outputSampleRate != m_settings.m_outputSampleRate) || force) { m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.0); m_sampleDistanceRemain = m_channelSampleRate / settings.m_outputSampleRate; if ((settings.m_sampleFormat == UDPSinkSettings::FormatLSB) || (settings.m_sampleFormat == UDPSinkSettings::FormatLSBMono) || (settings.m_sampleFormat == UDPSinkSettings::FormatUSB) || (settings.m_sampleFormat == UDPSinkSettings::FormatUSBMono)) { m_squelchGate = settings.m_outputSampleRate * 0.05; } else { m_squelchGate = (settings.m_outputSampleRate * settings.m_squelchGate) / 100; } m_squelchRelease = (settings.m_outputSampleRate * settings.m_squelchGate) / 100; initSquelch(m_squelchOpen); m_agc.resize(settings.m_outputSampleRate/5, settings.m_outputSampleRate/20, m_agcTarget); // Fixed 200 ms int stepDownDelay = (settings.m_outputSampleRate * (settings.m_squelchGate == 0 ? 1 : settings.m_squelchGate))/100; m_agc.setStepDownDelay(stepDownDelay); m_agc.setGate(settings.m_outputSampleRate * 0.05); m_bandpass.create(301, settings.m_outputSampleRate, 300.0, settings.m_rfBandwidth / 2.0f); m_inMovingAverage.resize(settings.m_outputSampleRate * 0.01, 1e-10); // 10 ms m_amMovingAverage.resize(settings.m_outputSampleRate * 0.005, 1e-10); // 5 ms m_outMovingAverage.resize(settings.m_outputSampleRate * 0.01, 1e-10); // 10 ms } if ((settings.m_squelchGate != m_settings.m_squelchGate) || force) { if ((settings.m_sampleFormat == UDPSinkSettings::FormatLSB) || (settings.m_sampleFormat == UDPSinkSettings::FormatLSBMono) || (settings.m_sampleFormat == UDPSinkSettings::FormatUSB) || (settings.m_sampleFormat == UDPSinkSettings::FormatUSBMono)) { m_squelchGate = settings.m_outputSampleRate * 0.05; } else { m_squelchGate = (settings.m_outputSampleRate * settings.m_squelchGate)/100; } m_squelchRelease = (settings.m_outputSampleRate * settings.m_squelchGate)/100; initSquelch(m_squelchOpen); int stepDownDelay = (settings.m_outputSampleRate * (settings.m_squelchGate == 0 ? 1 : settings.m_squelchGate))/100; m_agc.setStepDownDelay(stepDownDelay); // same delay for up and down } if ((settings.m_squelchdB != m_settings.m_squelchdB) || force) { m_squelch = CalcDb::powerFromdB(settings.m_squelchdB); m_agc.setThreshold(m_squelch*(1<<23)); } if ((settings.m_udpAddress != m_settings.m_udpAddress) || force) { m_udpBuffer16->setAddress(const_cast(settings.m_udpAddress)); m_udpBufferMono16->setAddress(const_cast(settings.m_udpAddress)); m_udpBuffer24->setAddress(const_cast(settings.m_udpAddress)); } if ((settings.m_udpPort != m_settings.m_udpPort) || force) { m_udpBuffer16->setPort(settings.m_udpPort); m_udpBufferMono16->setPort(settings.m_udpPort); m_udpBuffer24->setPort(settings.m_udpPort); } if ((settings.m_audioPort != m_settings.m_audioPort) || force) { disconnect(m_audioSocket, SIGNAL(readyRead()), this, SLOT(audioReadyRead())); delete m_audioSocket; m_audioSocket = new QUdpSocket(this); if (m_audioSocket->bind(QHostAddress::LocalHost, settings.m_audioPort)) { connect(m_audioSocket, SIGNAL(readyRead()), this, SLOT(audioReadyRead()), Qt::QueuedConnection); qDebug("UDPSinkSink::handleMessage: audio socket bound to port %d", settings.m_audioPort); } else { qWarning("UDPSinkSink::handleMessage: cannot bind audio socket"); } } if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) { m_phaseDiscri.setFMScaling((float) settings.m_outputSampleRate / (2.0f * settings.m_fmDeviation)); } m_settings = settings; }