/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2018 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "SWGDeviceState.h" #include "SWGDeviceSettings.h" #include "SWGBladeRF2InputSettings.h" #include "SWGDeviceReport.h" #include "SWGBladeRF2OutputReport.h" #include "dsp/dspcommands.h" #include "dsp/dspengine.h" #include "device/devicesinkapi.h" #include "device/devicesourceapi.h" #include "bladerf2/devicebladerf2shared.h" #include "bladerf2/devicebladerf2.h" #include "bladerf2outputthread.h" #include "bladerf2output.h" MESSAGE_CLASS_DEFINITION(BladeRF2Output::MsgConfigureBladeRF2, Message) MESSAGE_CLASS_DEFINITION(BladeRF2Output::MsgStartStop, Message) MESSAGE_CLASS_DEFINITION(BladeRF2Output::MsgReportGainRange, Message) BladeRF2Output::BladeRF2Output(DeviceSinkAPI *deviceAPI) : m_deviceAPI(deviceAPI), m_settings(), m_dev(0), m_thread(0), m_deviceDescription("BladeRF2Output"), m_running(false) { openDevice(); } BladeRF2Output::~BladeRF2Output() { if (m_running) { stop(); } closeDevice(); } void BladeRF2Output::destroy() { delete this; } bool BladeRF2Output::openDevice() { m_sampleSourceFifo.resize(m_settings.m_devSampleRate/(1<<(m_settings.m_log2Interp <= 4 ? m_settings.m_log2Interp : 4))); // look for Tx buddies and get reference to the device object if (m_deviceAPI->getSinkBuddies().size() > 0) // look sink sibling first { qDebug("BladeRF2Output::openDevice: look in Tx buddies"); DeviceSinkAPI *sinkBuddy = m_deviceAPI->getSinkBuddies()[0]; DeviceBladeRF2Shared *deviceBladeRF2Shared = (DeviceBladeRF2Shared*) sinkBuddy->getBuddySharedPtr(); if (deviceBladeRF2Shared == 0) { qCritical("BladeRF2Output::openDevice: the sink buddy shared pointer is null"); return false; } DeviceBladeRF2 *device = deviceBladeRF2Shared->m_dev; if (device == 0) { qCritical("BladeRF2Output::openDevice: cannot get device pointer from Tx buddy"); return false; } m_deviceShared.m_dev = device; } // look for Rx buddies and get reference to the device object else if (m_deviceAPI->getSourceBuddies().size() > 0) // then source { qDebug("BladeRF2Output::openDevice: look in Rx buddies"); DeviceSourceAPI *sourceBuddy = m_deviceAPI->getSourceBuddies()[0]; DeviceBladeRF2Shared *deviceBladeRF2Shared = (DeviceBladeRF2Shared*) sourceBuddy->getBuddySharedPtr(); if (deviceBladeRF2Shared == 0) { qCritical("BladeRF2Output::openDevice: the source buddy shared pointer is null"); return false; } DeviceBladeRF2 *device = deviceBladeRF2Shared->m_dev; if (device == 0) { qCritical("BladeRF2Output::openDevice: cannot get device pointer from Rx buddy"); return false; } m_deviceShared.m_dev = device; } // There are no buddies then create the first BladeRF2 device else { qDebug("BladeRF2Output::openDevice: open device here"); m_deviceShared.m_dev = new DeviceBladeRF2(); char serial[256]; strcpy(serial, qPrintable(m_deviceAPI->getSampleSinkSerial())); if (!m_deviceShared.m_dev->open(serial)) { qCritical("BladeRF2Output::openDevice: cannot open BladeRF2 device"); return false; } } m_deviceShared.m_channel = m_deviceAPI->getItemIndex(); // publicly allocate channel m_deviceShared.m_sink = this; m_deviceAPI->setBuddySharedPtr(&m_deviceShared); // propagate common parameters to API return true; } void BladeRF2Output::closeDevice() { if (m_deviceShared.m_dev == 0) { // was never open return; } if (m_running) { stop(); } if (m_thread) { // stills own the thread => transfer to a buddy moveThreadToBuddy(); } m_deviceShared.m_channel = -1; // publicly release channel m_deviceShared.m_sink = 0; // No buddies so effectively close the device if ((m_deviceAPI->getSinkBuddies().size() == 0) && (m_deviceAPI->getSourceBuddies().size() == 0)) { m_deviceShared.m_dev->close(); delete m_deviceShared.m_dev; m_deviceShared.m_dev = 0; } } void BladeRF2Output::init() { applySettings(m_settings, true); } BladeRF2OutputThread *BladeRF2Output::findThread() { if (m_thread == 0) // this does not own the thread { BladeRF2OutputThread *BladeRF2OutputThread = 0; // find a buddy that has allocated the thread const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator it = sinkBuddies.begin(); for (; it != sinkBuddies.end(); ++it) { BladeRF2Output *buddySink = ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_sink; if (buddySink) { BladeRF2OutputThread = buddySink->getThread(); if (BladeRF2OutputThread) { break; } } } return BladeRF2OutputThread; } else { return m_thread; // own thread } } void BladeRF2Output::moveThreadToBuddy() { const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator it = sinkBuddies.begin(); for (; it != sinkBuddies.end(); ++it) { BladeRF2Output *buddySink = ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_sink; if (buddySink) { buddySink->setThread(m_thread); m_thread = 0; // zero for others } } } bool BladeRF2Output::start() { // There is a single thread per physical device (Tx side). This thread is unique and referenced by a unique // buddy in the group of sink buddies associated with this physical device. // // This start method is responsible for managing the thread and channel enabling when the streaming of a Tx channel is started // // It checks the following conditions // - the thread is allocated or not (by itself or one of its buddies). If it is it grabs the thread pointer. // - the requested channel is the first (0) or the following (just 1 in BladeRF 2 case) // // The BladeRF support library lets you work in two possible modes: // - Single Output (SO) with only one channel streaming. This HAS to be channel 0. // - Multiple Output (MO) with two channels streaming using interleaved samples. It MUST be in this configuration if channel 1 // is used. When we will run with only channel 1 streaming from the client perspective the channel 0 will actually be enabled // and streaming but zero samples will be sent to it. // // It manages the transition form SO where only one channel (the first or channel 0) should be running to the // Multiple Output (MO) if the requested channel is 1. More generally it checks if the requested channel is within the current // channel range allocated in the thread or past it. To perform the transition it stops the thread, deletes it and creates a new one. // It marks the thread as needing start. // // If the requested channel is within the thread channel range (this thread being already allocated) it simply removes its FIFO reference // so that the samples are not taken from the FIFO anymore and leaves the thread unchanged (no stop, no delete/new) // // If there is no thread allocated it creates a new one with a number of channels that fits the requested channel. That is // 1 if channel 0 is requested (SO mode) and 2 if channel 1 is requested (MO mode). It marks the thread as needing start. // // Eventually it registers the FIFO in the thread. If the thread has to be started it enables the channels up to the number of channels // allocated in the thread and starts the thread. if (!m_deviceShared.m_dev) { qDebug("BladeRF2Output::start: no device object"); return false; } int requestedChannel = m_deviceAPI->getItemIndex(); BladeRF2OutputThread *bladeRF2OutputThread = findThread(); bool needsStart = false; if (bladeRF2OutputThread) // if thread is already allocated { qDebug("BladeRF2Output::start: thread is already allocated"); int nbOriginalChannels = bladeRF2OutputThread->getNbChannels(); if (requestedChannel+1 > nbOriginalChannels) // expansion by deleting and re-creating the thread { qDebug("BladeRF2Output::start: expand channels. Re-allocate thread and take ownership"); SampleSourceFifo **fifos = new SampleSourceFifo*[nbOriginalChannels]; unsigned int *log2Interps = new unsigned int[nbOriginalChannels]; for (int i = 0; i < nbOriginalChannels; i++) // save original FIFO references and data { fifos[i] = bladeRF2OutputThread->getFifo(i); log2Interps[i] = bladeRF2OutputThread->getLog2Interpolation(i); } bladeRF2OutputThread->stopWork(); delete bladeRF2OutputThread; bladeRF2OutputThread = new BladeRF2OutputThread(m_deviceShared.m_dev->getDev(), requestedChannel+1); m_thread = bladeRF2OutputThread; // take ownership for (int i = 0; i < nbOriginalChannels; i++) // restore original FIFO references { bladeRF2OutputThread->setFifo(i, fifos[i]); bladeRF2OutputThread->setLog2Interpolation(i, log2Interps[i]); } // remove old thread address from buddies (reset in all buddies) const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator it = sinkBuddies.begin(); for (; it != sinkBuddies.end(); ++it) { ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0); } // close all channels for (int i = bladeRF2OutputThread->getNbChannels()-1; i >= 0; i--) { m_deviceShared.m_dev->closeTx(i); } needsStart = true; } else { qDebug("BladeRF2Output::start: keep buddy thread"); } } else // first allocation { qDebug("BladeRF2Output::start: allocate thread and take ownership"); bladeRF2OutputThread = new BladeRF2OutputThread(m_deviceShared.m_dev->getDev(), requestedChannel+1); m_thread = bladeRF2OutputThread; // take ownership needsStart = true; } bladeRF2OutputThread->setFifo(requestedChannel, &m_sampleSourceFifo); bladeRF2OutputThread->setLog2Interpolation(requestedChannel, m_settings.m_log2Interp); applySettings(m_settings, true); // re-apply forcibly to set sample rate with the new number of channels if (needsStart) { qDebug("BladeRF2Output::start: enabling channel(s) and (re)starting the thread"); for (unsigned int i = 0; i < bladeRF2OutputThread->getNbChannels(); i++) // open all channels { if (!m_deviceShared.m_dev->openTx(i)) { qCritical("BladeRF2Output::start: channel %u cannot be enabled", i); } } bladeRF2OutputThread->startWork(); } qDebug("BladeRF2Output::start: started"); m_running = true; return true; } void BladeRF2Output::stop() { // This stop method is responsible for managing the thread and channel disabling when the streaming of // a Tx channel is stopped // // If the thread is currently managing only one channel (SO mode). The thread can be just stopped and deleted. // Then the channel is closed (disabled). // // If the thread is currently managing many channels (MO mode) and we are removing the last channel. The transition // from MO to SO or reduction of MO size is handled by stopping the thread, deleting it and creating a new one // with one channel less if (and only if) there is still a channel active. // // If the thread is currently managing many channels (MO mode) but the channel being stopped is not the last // channel then the FIFO reference is simply removed from the thread so that this FIFO will not be used anymore. // In this case the channel is not closed (disabled) so that other channels can continue with the // same configuration. The device continues streaming on this channel but the samples are set to all zeros. if (!m_running) { return; } int requestedChannel = m_deviceAPI->getItemIndex(); BladeRF2OutputThread *bladeRF2OutputThread = findThread(); if (bladeRF2OutputThread == 0) { // no thread allocated return; } int nbOriginalChannels = bladeRF2OutputThread->getNbChannels(); if (nbOriginalChannels == 1) // SO mode => just stop and delete the thread { qDebug("BladeRF2Output::stop: SO mode. Just stop and delete the thread"); bladeRF2OutputThread->stopWork(); delete bladeRF2OutputThread; m_thread = 0; // remove old thread address from buddies (reset in all buddies) const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator it = sinkBuddies.begin(); for (; it != sinkBuddies.end(); ++it) { ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0); } m_deviceShared.m_dev->closeTx(0); // close the unique channel } else if (requestedChannel == nbOriginalChannels - 1) // remove last MO channel => reduce by deleting and re-creating the thread { qDebug("BladeRF2Output::stop: MO mode. Reduce by deleting and re-creating the thread"); bladeRF2OutputThread->stopWork(); SampleSourceFifo **fifos = new SampleSourceFifo*[nbOriginalChannels-1]; unsigned int *log2Interps = new unsigned int[nbOriginalChannels-1]; bool stillActiveFIFO = false; for (int i = 0; i < nbOriginalChannels-1; i++) // save original FIFO references { fifos[i] = bladeRF2OutputThread->getFifo(i); stillActiveFIFO = stillActiveFIFO || (bladeRF2OutputThread->getFifo(i) != 0); log2Interps[i] = bladeRF2OutputThread->getLog2Interpolation(i); } delete bladeRF2OutputThread; m_thread = 0; if (stillActiveFIFO) { bladeRF2OutputThread = new BladeRF2OutputThread(m_deviceShared.m_dev->getDev(), nbOriginalChannels-1); m_thread = bladeRF2OutputThread; // take ownership for (int i = 0; i < nbOriginalChannels-1; i++) // restore original FIFO references { bladeRF2OutputThread->setFifo(i, fifos[i]); bladeRF2OutputThread->setLog2Interpolation(i, log2Interps[i]); } } else { qDebug("BladeRF2Output::stop: do not re-create thread as there are no more FIFOs active"); } // remove old thread address from buddies (reset in all buddies) const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator it = sinkBuddies.begin(); for (; it != sinkBuddies.end(); ++it) { ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0); } // close all channels for (int i = nbOriginalChannels-1; i >= 0; i--) { m_deviceShared.m_dev->closeTx(i); } if (stillActiveFIFO) { qDebug("BladeRF2Output::stop: enabling channel(s) and restarting the thread"); for (unsigned int i = 0; i < bladeRF2OutputThread->getNbChannels(); i++) // open all channels { if (!m_deviceShared.m_dev->openTx(i)) { qCritical("BladeRF2Output::start: channel %u cannot be enabled", i); } } bladeRF2OutputThread->startWork(); } } else // remove channel from existing thread { qDebug("BladeRF2Output::stop: MO mode. Not changing MO configuration. Just remove FIFO reference"); bladeRF2OutputThread->setFifo(requestedChannel, 0); // remove FIFO } applySettings(m_settings, true); // re-apply forcibly to set sample rate with the new number of channels m_running = false; } QByteArray BladeRF2Output::serialize() const { return m_settings.serialize(); } bool BladeRF2Output::deserialize(const QByteArray& data) { bool success = true; if (!m_settings.deserialize(data)) { m_settings.resetToDefaults(); success = false; } MsgConfigureBladeRF2* message = MsgConfigureBladeRF2::create(m_settings, true); m_inputMessageQueue.push(message); if (m_guiMessageQueue) { MsgConfigureBladeRF2* messageToGUI = MsgConfigureBladeRF2::create(m_settings, true); m_guiMessageQueue->push(messageToGUI); } return success; } const QString& BladeRF2Output::getDeviceDescription() const { return m_deviceDescription; } int BladeRF2Output::getSampleRate() const { int rate = m_settings.m_devSampleRate; return (rate / (1<push(messageToGUI); } } bool BladeRF2Output::setDeviceCenterFrequency(struct bladerf *dev, int requestedChannel, quint64 freq_hz) { qint64 df = ((qint64)freq_hz * m_settings.m_LOppmTenths) / 10000000LL; freq_hz += df; int status = bladerf_set_frequency(dev, BLADERF_CHANNEL_TX(requestedChannel), freq_hz); if (status < 0) { qWarning("BladeRF2Output::setDeviceCenterFrequency: bladerf_set_frequency(%lld) failed: %s", freq_hz, bladerf_strerror(status)); return false; } else { qDebug("BladeRF2Output::setDeviceCenterFrequency: bladerf_set_frequency(%lld)", freq_hz); return true; } } void BladeRF2Output::getFrequencyRange(uint64_t& min, uint64_t& max, int& step) { if (m_deviceShared.m_dev) { m_deviceShared.m_dev->getFrequencyRangeTx(min, max, step); } } void BladeRF2Output::getSampleRateRange(int& min, int& max, int& step) { if (m_deviceShared.m_dev) { m_deviceShared.m_dev->getSampleRateRangeTx(min, max, step); } } void BladeRF2Output::getBandwidthRange(int& min, int& max, int& step) { if (m_deviceShared.m_dev) { m_deviceShared.m_dev->getBandwidthRangeTx(min, max, step); } } void BladeRF2Output::getGlobalGainRange(int& min, int& max, int& step) { if (m_deviceShared.m_dev) { m_deviceShared.m_dev->getGlobalGainRangeTx(min, max, step); } } bool BladeRF2Output::handleMessage(const Message& message) { if (MsgConfigureBladeRF2::match(message)) { MsgConfigureBladeRF2& conf = (MsgConfigureBladeRF2&) message; qDebug() << "BladeRF2Output::handleMessage: MsgConfigureBladeRF2"; if (!applySettings(conf.getSettings(), conf.getForce())) { qDebug("BladeRF2Output::handleMessage: MsgConfigureBladeRF2 config error"); } return true; } else if (DeviceBladeRF2Shared::MsgReportBuddyChange::match(message)) { DeviceBladeRF2Shared::MsgReportBuddyChange& report = (DeviceBladeRF2Shared::MsgReportBuddyChange&) message; struct bladerf *dev = m_deviceShared.m_dev->getDev(); BladeRF2OutputSettings settings = m_settings; int status; unsigned int tmp_uint; bool tmp_bool; // evaluate changes that may have been introduced by changes in a buddy if (dev) // The BladeRF device must have been open to do so { int requestedChannel = m_deviceAPI->getItemIndex(); int nbChannels = getNbChannels(); if (report.getRxElseTx()) // Rx buddy change: check for sample rate change only { tmp_uint = report.getDevSampleRate(); settings.m_devSampleRate = tmp_uint / (nbChannels == 0 ? 1 : nbChannels); // status = bladerf_get_sample_rate(dev, BLADERF_CHANNEL_TX(requestedChannel), &tmp_uint); // // if (status < 0) { // qCritical("BladeRF2Output::handleMessage: MsgReportBuddyChange: bladerf_get_sample_rate error: %s", bladerf_strerror(status)); // } else { // settings.m_devSampleRate = tmp_uint / (nbChannels == 0 ? 1 : nbChannels); // } } else // Tx buddy change: check for: frequency, gain mode and value, bias tee, sample rate, bandwidth { settings.m_devSampleRate = report.getDevSampleRate(); settings.m_LOppmTenths = report.getLOppmTenths(); settings.m_centerFrequency = report.getCenterFrequency(); status = bladerf_get_bandwidth(dev, BLADERF_CHANNEL_TX(requestedChannel), &tmp_uint); if (status < 0) { qCritical("BladeRF2Output::handleMessage: MsgReportBuddyChange: bladerf_get_bandwidth error: %s", bladerf_strerror(status)); } else { settings.m_bandwidth = tmp_uint; } status = bladerf_get_bias_tee(dev, BLADERF_CHANNEL_TX(requestedChannel), &tmp_bool); if (status < 0) { qCritical("BladeRF2Output::handleMessage: MsgReportBuddyChange: bladerf_get_bias_tee error: %s", bladerf_strerror(status)); } else { settings.m_biasTee = tmp_bool; } } // change DSP settings if buddy change introduced a change in center frequency or base rate if ((settings.m_centerFrequency != m_settings.m_centerFrequency) || (settings.m_devSampleRate != m_settings.m_devSampleRate)) { int sampleRate = settings.m_devSampleRate/(1<getDeviceEngineInputMessageQueue()->push(notif); } m_settings = settings; // acknowledge the new settings // propagate settings to GUI if any if (getMessageQueueToGUI()) { MsgConfigureBladeRF2 *reportToGUI = MsgConfigureBladeRF2::create(m_settings, false); getMessageQueueToGUI()->push(reportToGUI); } } return true; } else if (MsgStartStop::match(message)) { MsgStartStop& cmd = (MsgStartStop&) message; qDebug() << "BladeRF2Input::handleMessage: MsgStartStop: " << (cmd.getStartStop() ? "start" : "stop"); if (cmd.getStartStop()) { if (m_deviceAPI->initGeneration()) { m_deviceAPI->startGeneration(); } } else { m_deviceAPI->stopGeneration(); } return true; } else { return false; } } bool BladeRF2Output::applySettings(const BladeRF2OutputSettings& settings, bool force) { bool forwardChangeOwnDSP = false; bool forwardChangeRxBuddies = false; bool forwardChangeTxBuddies = false; struct bladerf *dev = m_deviceShared.m_dev->getDev(); int requestedChannel = m_deviceAPI->getItemIndex(); int nbChannels = getNbChannels(); qint64 deviceCenterFrequency = settings.m_centerFrequency; deviceCenterFrequency -= settings.m_transverterMode ? settings.m_transverterDeltaFrequency : 0; deviceCenterFrequency = deviceCenterFrequency < 0 ? 0 : deviceCenterFrequency; if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || (m_settings.m_log2Interp != settings.m_log2Interp) || force) { BladeRF2OutputThread *bladeRF2OutputThread = findThread(); SampleSourceFifo *fifo = 0; if (bladeRF2OutputThread) { fifo = bladeRF2OutputThread->getFifo(requestedChannel); bladeRF2OutputThread->setFifo(requestedChannel, 0); } int fifoSize; if (settings.m_log2Interp >= 5) { fifoSize = DeviceBladeRF2Shared::m_sampleFifoMinSize32; } else { fifoSize = std::max( (int) ((settings.m_devSampleRate/(1<setFifo(requestedChannel, &m_sampleSourceFifo); } } if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force) { forwardChangeOwnDSP = true; forwardChangeRxBuddies = true; forwardChangeTxBuddies = true; if (dev != 0) { unsigned int actualSamplerate; int status = bladerf_set_sample_rate(dev, BLADERF_CHANNEL_TX(requestedChannel), settings.m_devSampleRate * (nbChannels == 0 ? 1 : nbChannels), &actualSamplerate); if (status < 0) { qCritical("BladeRF2Output::applySettings: could not set sample rate: %d: %s", settings.m_devSampleRate, bladerf_strerror(status)); } else { qDebug() << "BladeRF2Output::applySettings: bladerf_set_sample_rate: actual sample rate is " << actualSamplerate; } } } if ((m_settings.m_bandwidth != settings.m_bandwidth) || force) { forwardChangeTxBuddies = true; if (dev != 0) { unsigned int actualBandwidth; int status = bladerf_set_bandwidth(dev, BLADERF_CHANNEL_TX(requestedChannel), settings.m_bandwidth, &actualBandwidth); if(status < 0) { qCritical("BladeRF2Output::applySettings: could not set bandwidth: %d: %s", settings.m_bandwidth, bladerf_strerror(status)); } else { qDebug() << "BladeRF2Output::applySettings: bladerf_set_bandwidth: actual bandwidth is " << actualBandwidth; } } } if ((m_settings.m_log2Interp != settings.m_log2Interp) || force) { forwardChangeOwnDSP = true; BladeRF2OutputThread *outputThread = findThread(); if (outputThread != 0) { outputThread->setLog2Interpolation(requestedChannel, settings.m_log2Interp); qDebug() << "BladeRF2Output::applySettings: set interpolation to " << (1<push(msg); } } } } if ((m_settings.m_biasTee != settings.m_biasTee) || force) { forwardChangeTxBuddies = true; m_deviceShared.m_dev->setBiasTeeTx(settings.m_biasTee); } if ((m_settings.m_globalGain != settings.m_globalGain) || force) { forwardChangeTxBuddies = true; if (dev) { // qDebug("BladeRF2Output::applySettings: channel: %d gain: %d", requestedChannel, settings.m_globalGain); int status = bladerf_set_gain(dev, BLADERF_CHANNEL_TX(requestedChannel), settings.m_globalGain); if (status < 0) { qWarning("BladeRF2Output::applySettings: bladerf_set_gain(%d) failed: %s", settings.m_globalGain, bladerf_strerror(status)); } else { qDebug("BladeRF2Output::applySettings: bladerf_set_gain(%d)", settings.m_globalGain); } } } if (forwardChangeOwnDSP) { int sampleRate = settings.m_devSampleRate/(1<getDeviceEngineInputMessageQueue()->push(notif); } if (forwardChangeRxBuddies) { // send to source buddies const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator itSource = sourceBuddies.begin(); for (; itSource != sourceBuddies.end(); ++itSource) { DeviceBladeRF2Shared::MsgReportBuddyChange *report = DeviceBladeRF2Shared::MsgReportBuddyChange::create( settings.m_centerFrequency, settings.m_LOppmTenths, 2, settings.m_devSampleRate * (nbChannels == 0 ? 1 : nbChannels), // need to forward actual rate to the Rx side false); (*itSource)->getSampleSourceInputMessageQueue()->push(report); } } if (forwardChangeTxBuddies) { // send to sink buddies const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator itSink = sinkBuddies.begin(); for (; itSink != sinkBuddies.end(); ++itSink) { DeviceBladeRF2Shared::MsgReportBuddyChange *report = DeviceBladeRF2Shared::MsgReportBuddyChange::create( settings.m_centerFrequency, settings.m_LOppmTenths, 2, settings.m_devSampleRate, false); (*itSink)->getSampleSinkInputMessageQueue()->push(report); } } m_settings = settings; qDebug() << "BladeRF2Output::applySettings: " << " m_transverterMode: " << m_settings.m_transverterMode << " m_transverterDeltaFrequency: " << m_settings.m_transverterDeltaFrequency << " deviceCenterFrequency: " << deviceCenterFrequency << " m_centerFrequency: " << m_settings.m_centerFrequency << " Hz" << " m_LOppmTenths: " << m_settings.m_LOppmTenths << " m_bandwidth: " << m_settings.m_bandwidth << " m_log2Interp: " << m_settings.m_log2Interp << " m_devSampleRate: " << m_settings.m_devSampleRate << " nbChannels: " << nbChannels << " m_globalGain: " << m_settings.m_globalGain << " m_biasTee: " << m_settings.m_biasTee; return true; } int BladeRF2Output::getNbChannels() { BladeRF2OutputThread *bladeRF2OutputThread = findThread(); if (bladeRF2OutputThread) { return bladeRF2OutputThread->getNbChannels(); } else { return 0; } } int BladeRF2Output::webapiSettingsGet( SWGSDRangel::SWGDeviceSettings& response, QString& errorMessage __attribute__((unused))) { response.setBladeRf2OutputSettings(new SWGSDRangel::SWGBladeRF2OutputSettings()); response.getBladeRf2OutputSettings()->init(); webapiFormatDeviceSettings(response, m_settings); return 200; } int BladeRF2Output::webapiSettingsPutPatch( bool force, const QStringList& deviceSettingsKeys, SWGSDRangel::SWGDeviceSettings& response, // query + response QString& errorMessage __attribute__((unused))) { BladeRF2OutputSettings settings = m_settings; if (deviceSettingsKeys.contains("centerFrequency")) { settings.m_centerFrequency = response.getBladeRf2OutputSettings()->getCenterFrequency(); } if (deviceSettingsKeys.contains("LOppmTenths")) { settings.m_LOppmTenths = response.getBladeRf2OutputSettings()->getLOppmTenths(); } if (deviceSettingsKeys.contains("devSampleRate")) { settings.m_devSampleRate = response.getBladeRf2OutputSettings()->getDevSampleRate(); } if (deviceSettingsKeys.contains("bandwidth")) { settings.m_bandwidth = response.getBladeRf2OutputSettings()->getBandwidth(); } if (deviceSettingsKeys.contains("log2Interp")) { settings.m_log2Interp = response.getBladeRf2OutputSettings()->getLog2Interp(); } if (deviceSettingsKeys.contains("biasTee")) { settings.m_biasTee = response.getBladeRf2OutputSettings()->getBiasTee() != 0; } if (deviceSettingsKeys.contains("globalGain")) { settings.m_globalGain = response.getBladeRf2OutputSettings()->getGlobalGain(); } if (deviceSettingsKeys.contains("transverterDeltaFrequency")) { settings.m_transverterDeltaFrequency = response.getBladeRf2OutputSettings()->getTransverterDeltaFrequency(); } if (deviceSettingsKeys.contains("transverterMode")) { settings.m_transverterMode = response.getBladeRf2OutputSettings()->getTransverterMode() != 0; } MsgConfigureBladeRF2 *msg = MsgConfigureBladeRF2::create(settings, force); m_inputMessageQueue.push(msg); if (m_guiMessageQueue) // forward to GUI if any { MsgConfigureBladeRF2 *msgToGUI = MsgConfigureBladeRF2::create(settings, force); m_guiMessageQueue->push(msgToGUI); } webapiFormatDeviceSettings(response, settings); return 200; } int BladeRF2Output::webapiReportGet(SWGSDRangel::SWGDeviceReport& response, QString& errorMessage __attribute__((unused))) { response.setBladeRf2OutputReport(new SWGSDRangel::SWGBladeRF2OutputReport()); response.getBladeRf2OutputReport()->init(); webapiFormatDeviceReport(response); return 200; } void BladeRF2Output::webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response, const BladeRF2OutputSettings& settings) { response.getBladeRf2OutputSettings()->setCenterFrequency(settings.m_centerFrequency); response.getBladeRf2OutputSettings()->setLOppmTenths(settings.m_LOppmTenths); response.getBladeRf2OutputSettings()->setDevSampleRate(settings.m_devSampleRate); response.getBladeRf2OutputSettings()->setBandwidth(settings.m_bandwidth); response.getBladeRf2OutputSettings()->setLog2Interp(settings.m_log2Interp); response.getBladeRf2OutputSettings()->setBiasTee(settings.m_biasTee ? 1 : 0); response.getBladeRf2OutputSettings()->setGlobalGain(settings.m_globalGain); response.getBladeRf2OutputSettings()->setTransverterDeltaFrequency(settings.m_transverterDeltaFrequency); response.getBladeRf2OutputSettings()->setTransverterMode(settings.m_transverterMode ? 1 : 0); } void BladeRF2Output::webapiFormatDeviceReport(SWGSDRangel::SWGDeviceReport& response) { DeviceBladeRF2 *device = m_deviceShared.m_dev; if (device) { int min, max, step; uint64_t f_min, f_max; device->getBandwidthRangeTx(min, max, step); response.getBladeRf2OutputReport()->setBandwidthRange(new SWGSDRangel::SWGRange); response.getBladeRf2OutputReport()->getBandwidthRange()->setMin(min); response.getBladeRf2OutputReport()->getBandwidthRange()->setMax(max); response.getBladeRf2OutputReport()->getBandwidthRange()->setStep(step); device->getFrequencyRangeTx(f_min, f_max, step); response.getBladeRf2OutputReport()->setFrequencyRange(new SWGSDRangel::SWGFrequencyRange); response.getBladeRf2OutputReport()->getFrequencyRange()->setMin(f_min); response.getBladeRf2OutputReport()->getFrequencyRange()->setMax(f_max); response.getBladeRf2OutputReport()->getFrequencyRange()->setStep(step); device->getGlobalGainRangeTx(min, max, step); response.getBladeRf2OutputReport()->setGlobalGainRange(new SWGSDRangel::SWGRange); response.getBladeRf2OutputReport()->getGlobalGainRange()->setMin(min); response.getBladeRf2OutputReport()->getGlobalGainRange()->setMax(max); response.getBladeRf2OutputReport()->getGlobalGainRange()->setStep(step); device->getSampleRateRangeTx(min, max, step); response.getBladeRf2OutputReport()->setSampleRateRange(new SWGSDRangel::SWGRange); response.getBladeRf2OutputReport()->getSampleRateRange()->setMin(min); response.getBladeRf2OutputReport()->getSampleRateRange()->setMax(max); response.getBladeRf2OutputReport()->getSampleRateRange()->setStep(step); } } int BladeRF2Output::webapiRunGet( SWGSDRangel::SWGDeviceState& response, QString& errorMessage __attribute__((unused))) { m_deviceAPI->getDeviceEngineStateStr(*response.getState()); return 200; } int BladeRF2Output::webapiRun( bool run, SWGSDRangel::SWGDeviceState& response, QString& errorMessage __attribute__((unused))) { m_deviceAPI->getDeviceEngineStateStr(*response.getState()); MsgStartStop *message = MsgStartStop::create(run); m_inputMessageQueue.push(message); if (m_guiMessageQueue) // forward to GUI if any { MsgStartStop *msgToGUI = MsgStartStop::create(run); m_guiMessageQueue->push(msgToGUI); } return 200; }