/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see <http://www.gnu.org/licenses/>. // /////////////////////////////////////////////////////////////////////////////////// #include <stdio.h> #include <errno.h> #include <assert.h> #include <algorithm> #include <QDebug> #include "dsp/samplesourcefifo.h" #include "dsp/basebandsamplesink.h" #include "testsinkthread.h" TestSinkThread::TestSinkThread(SampleSourceFifo* sampleFifo, QObject* parent) : QThread(parent), m_running(false), m_bufsize(0), m_samplesChunkSize(0), m_sampleFifo(sampleFifo), m_samplesCount(0), m_samplerate(0), m_log2Interpolation(0), m_throttlems(TESTSINK_THROTTLE_MS), m_maxThrottlems(50), m_throttleToggle(false), m_buf(0) { } TestSinkThread::~TestSinkThread() { if (m_running) { stopWork(); } if (m_buf) delete[] m_buf; } void TestSinkThread::startWork() { qDebug() << "TestSinkThread::startWork: "; m_maxThrottlems = 0; m_startWaitMutex.lock(); m_elapsedTimer.start(); start(); while(!m_running) { m_startWaiter.wait(&m_startWaitMutex, 100); } m_startWaitMutex.unlock(); } void TestSinkThread::stopWork() { qDebug() << "TestSinkThread::stopWork"; m_running = false; wait(); } void TestSinkThread::setSamplerate(int samplerate) { if (samplerate != m_samplerate) { qDebug() << "TestSinkThread::setSamplerate:" << " new:" << samplerate << " old:" << m_samplerate; bool wasRunning = false; if (m_running) { stopWork(); wasRunning = true; } // resize sample FIFO if (m_sampleFifo) { m_sampleFifo->resize(SampleSourceFifo::getSizePolicy(samplerate)); } // resize output buffer if (m_buf) delete[] m_buf; m_buf = new int16_t[samplerate*(1<<m_log2Interpolation)*2]; m_samplerate = samplerate; m_samplesChunkSize = (m_samplerate * m_throttlems) / 1000; if (wasRunning) { startWork(); } } } void TestSinkThread::setLog2Interpolation(int log2Interpolation) { if ((log2Interpolation < 0) || (log2Interpolation > 6)) { return; } if (log2Interpolation != m_log2Interpolation) { qDebug() << "TestSinkThread::setLog2Interpolation:" << " new:" << log2Interpolation << " old:" << m_log2Interpolation; bool wasRunning = false; if (m_running) { stopWork(); wasRunning = true; } // resize output buffer if (m_buf) delete[] m_buf; m_buf = new int16_t[m_samplerate*(1<<log2Interpolation)*2]; m_log2Interpolation = log2Interpolation; if (wasRunning) { startWork(); } } } void TestSinkThread::run() { m_running = true; m_startWaiter.wakeAll(); while(m_running) // actual work is in the tick() function { sleep(1); } m_running = false; } void TestSinkThread::connectTimer(const QTimer& timer) { qDebug() << "TestSinkThread::connectTimer"; connect(&timer, SIGNAL(timeout()), this, SLOT(tick())); } void TestSinkThread::tick() { if (m_running) { qint64 throttlems = m_elapsedTimer.restart(); if (throttlems != m_throttlems) { m_throttlems = throttlems; m_samplesChunkSize = (m_samplerate * (m_throttlems+(m_throttleToggle ? 1 : 0))) / 1000; m_throttleToggle = !m_throttleToggle; } unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End; SampleVector& data = m_sampleFifo->getData(); m_sampleFifo->read(m_samplesChunkSize, iPart1Begin, iPart1End, iPart2Begin, iPart2End); m_samplesCount += m_samplesChunkSize; if (iPart1Begin != iPart1End) { callbackPart(data, iPart1Begin, iPart1End); } if (iPart2Begin != iPart2End) { callbackPart(data, iPart2Begin, iPart2End); } } } void TestSinkThread::callbackPart(SampleVector& data, unsigned int iBegin, unsigned int iEnd) { SampleVector::iterator beginRead = data.begin() + iBegin; unsigned int chunkSize = iEnd - iBegin; if (m_log2Interpolation == 0) { m_interpolators.interpolate1(&beginRead, m_buf, 2*chunkSize); feedSpectrum(m_buf, 2*chunkSize); } else { switch (m_log2Interpolation) { case 1: m_interpolators.interpolate2_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2); break; case 2: m_interpolators.interpolate4_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2); break; case 3: m_interpolators.interpolate8_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2); break; case 4: m_interpolators.interpolate16_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2); break; case 5: m_interpolators.interpolate32_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2); break; case 6: m_interpolators.interpolate64_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2); break; default: break; } feedSpectrum(m_buf, 2*chunkSize*(1<<m_log2Interpolation)); } } void TestSinkThread::feedSpectrum(int16_t *buf, unsigned int bufSize) { if (!m_spectrumSink) { return; } m_samplesVector.allocate(bufSize/2); Sample16 *s16Buf = (Sample16*) buf; std::transform( s16Buf, s16Buf + (bufSize/2), m_samplesVector.m_vector.begin(), [](Sample16 s) -> Sample { return Sample{s.m_real, s.m_imag}; } ); m_spectrumSink->feed(m_samplesVector.m_vector.begin(), m_samplesVector.m_vector.begin() + (bufSize/2), false); }