/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "audio/audiooutput.h" #include "dsp/dspengine.h" #include "dsp/threadedbasebandsamplesink.h" #include "dsp/downchannelizer.h" #include "dsp/dspcommands.h" #include "device/devicesourceapi.h" #include "dsddemod.h" MESSAGE_CLASS_DEFINITION(DSDDemod::MsgConfigureChannelizer, Message) MESSAGE_CLASS_DEFINITION(DSDDemod::MsgConfigureDSDDemod, Message) MESSAGE_CLASS_DEFINITION(DSDDemod::MsgConfigureMyPosition, Message) const QString DSDDemod::m_channelIdURI = "sdrangel.channel.dsddemod"; const QString DSDDemod::m_channelId = "DSDDemod"; const int DSDDemod::m_udpBlockSize = 512; DSDDemod::DSDDemod(DeviceSourceAPI *deviceAPI) : ChannelSinkAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_inputSampleRate(48000), m_inputFrequencyOffset(0), m_interpolatorDistance(0.0f), m_interpolatorDistanceRemain(0.0f), m_sampleCount(0), m_squelchCount(0), m_squelchGate(0), m_squelchLevel(1e-4), m_squelchOpen(false), m_squelchDelayLine(24000), m_audioFifo1(48000), m_audioFifo2(48000), m_scopeXY(0), m_scopeEnabled(true), m_dsdDecoder(), m_settingsMutex(QMutex::Recursive) { setObjectName(m_channelId); m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_sampleBuffer = new FixReal[1<<17]; // 128 kS m_sampleBufferIndex = 0; m_scaleFromShort = SDR_RX_SAMP_SZ < sizeof(short)*8 ? 1 : 1<<(SDR_RX_SAMP_SZ - sizeof(short)*8); m_magsq = 0.0f; m_magsqSum = 0.0f; m_magsqPeak = 0.0f; m_magsqCount = 0; DSPEngine::instance()->getAudioDeviceManager()->addAudioSink(&m_audioFifo1, getInputMessageQueue()); DSPEngine::instance()->getAudioDeviceManager()->addAudioSink(&m_audioFifo2, getInputMessageQueue()); m_audioSampleRate = DSPEngine::instance()->getAudioDeviceManager()->getOutputSampleRate(); applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); applySettings(m_settings, true); m_channelizer = new DownChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); m_deviceAPI->addThreadedSink(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); } DSDDemod::~DSDDemod() { delete[] m_sampleBuffer; DSPEngine::instance()->getAudioDeviceManager()->removeAudioSink(&m_audioFifo1); DSPEngine::instance()->getAudioDeviceManager()->removeAudioSink(&m_audioFifo2); m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; } void DSDDemod::configureMyPosition(MessageQueue* messageQueue, float myLatitude, float myLongitude) { Message* cmd = MsgConfigureMyPosition::create(myLatitude, myLongitude); messageQueue->push(cmd); } void DSDDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst __attribute__((unused))) { Complex ci; int samplesPerSymbol = m_dsdDecoder.getSamplesPerSymbol(); m_settingsMutex.lock(); m_scopeSampleBuffer.clear(); m_dsdDecoder.enableMbelib(!DSPEngine::instance()->hasDVSerialSupport()); // disable mbelib if DV serial support is present and activated else enable it for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { FixReal sample, delayedSample; qint16 sampleDSD; Real re = ci.real() / SDR_RX_SCALED; Real im = ci.imag() / SDR_RX_SCALED; Real magsq = re*re + im*im; m_movingAverage(magsq); m_magsqSum += magsq; if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; Real demod = m_phaseDiscri.phaseDiscriminator(ci) * m_settings.m_demodGain; // [-1.0:1.0] m_sampleCount++; // AF processing if (m_movingAverage.asDouble() > m_squelchLevel) { if (m_squelchGate > 0) { if (m_squelchCount < m_squelchGate*2) { m_squelchCount++; } m_squelchDelayLine.write(demod); m_squelchOpen = m_squelchCount > m_squelchGate; } else { m_squelchOpen = true; } } else { if (m_squelchGate > 0) { if (m_squelchCount > 0) { m_squelchCount--; } m_squelchDelayLine.write(0); m_squelchOpen = m_squelchCount > m_squelchGate; } else { m_squelchOpen = false; } } if (m_squelchOpen) { if (m_squelchGate > 0) { sampleDSD = m_squelchDelayLine.readBack(m_squelchGate) * 32768.0f; // DSD decoder takes int16 samples sample = m_squelchDelayLine.readBack(m_squelchGate) * SDR_RX_SCALEF; // scale to sample size } else { sampleDSD = demod * 32768.0f; // DSD decoder takes int16 samples sample = demod * SDR_RX_SCALEF; // scale to sample size } } else { sampleDSD = 0; sample = 0; } m_dsdDecoder.pushSample(sampleDSD); if (m_settings.m_enableCosineFiltering) { // show actual input to FSK demod sample = m_dsdDecoder.getFilteredSample() * m_scaleFromShort; } if (m_sampleBufferIndex < (1<<17)-1) { m_sampleBufferIndex++; } else { m_sampleBufferIndex = 0; } m_sampleBuffer[m_sampleBufferIndex] = sample; if (m_sampleBufferIndex < samplesPerSymbol) { delayedSample = m_sampleBuffer[(1<<17) - samplesPerSymbol + m_sampleBufferIndex]; // wrap } else { delayedSample = m_sampleBuffer[m_sampleBufferIndex - samplesPerSymbol]; } if (m_settings.m_syncOrConstellation) { Sample s(sample, m_dsdDecoder.getSymbolSyncSample() * m_scaleFromShort * 0.84); m_scopeSampleBuffer.push_back(s); } else { Sample s(sample, delayedSample); // I=signal, Q=signal delayed by 20 samples (2400 baud: lowest rate) m_scopeSampleBuffer.push_back(s); } if (DSPEngine::instance()->hasDVSerialSupport()) { if ((m_settings.m_slot1On) && m_dsdDecoder.mbeDVReady1()) { if (!m_settings.m_audioMute) { DSPEngine::instance()->pushMbeFrame( m_dsdDecoder.getMbeDVFrame1(), m_dsdDecoder.getMbeRateIndex(), m_settings.m_volume * 10.0, m_settings.m_tdmaStereo ? 1 : 3, // left or both channels m_settings.m_highPassFilter, m_audioSampleRate/8000, // upsample from native 8k &m_audioFifo1); } m_dsdDecoder.resetMbeDV1(); } if ((m_settings.m_slot2On) && m_dsdDecoder.mbeDVReady2()) { if (!m_settings.m_audioMute) { DSPEngine::instance()->pushMbeFrame( m_dsdDecoder.getMbeDVFrame2(), m_dsdDecoder.getMbeRateIndex(), m_settings.m_volume * 10.0, m_settings.m_tdmaStereo ? 2 : 3, // right or both channels m_settings.m_highPassFilter, m_audioSampleRate/8000, // upsample from native 8k &m_audioFifo2); } m_dsdDecoder.resetMbeDV2(); } } // if (DSPEngine::instance()->hasDVSerialSupport() && m_dsdDecoder.mbeDVReady1()) // { // if (!m_settings.m_audioMute) // { // DSPEngine::instance()->pushMbeFrame(m_dsdDecoder.getMbeDVFrame1(), m_dsdDecoder.getMbeRateIndex(), m_settings.m_volume, &m_audioFifo1); // } // // m_dsdDecoder.resetMbeDV1(); // } m_interpolatorDistanceRemain += m_interpolatorDistance; } } if (!DSPEngine::instance()->hasDVSerialSupport()) { if (m_settings.m_slot1On) { int nbAudioSamples; short *dsdAudio = m_dsdDecoder.getAudio1(nbAudioSamples); if (nbAudioSamples > 0) { if (!m_settings.m_audioMute) { m_audioFifo1.write((const quint8*) dsdAudio, nbAudioSamples, 10); } m_dsdDecoder.resetAudio1(); } } if (m_settings.m_slot2On) { int nbAudioSamples; short *dsdAudio = m_dsdDecoder.getAudio2(nbAudioSamples); if (nbAudioSamples > 0) { if (!m_settings.m_audioMute) { m_audioFifo2.write((const quint8*) dsdAudio, nbAudioSamples, 10); } m_dsdDecoder.resetAudio2(); } } // int nbAudioSamples; // short *dsdAudio = m_dsdDecoder.getAudio1(nbAudioSamples); // // if (nbAudioSamples > 0) // { // if (!m_settings.m_audioMute) { // uint res = m_audioFifo1.write((const quint8*) dsdAudio, nbAudioSamples, 10); // } // // m_dsdDecoder.resetAudio1(); // } } if ((m_scopeXY != 0) && (m_scopeEnabled)) { m_scopeXY->feed(m_scopeSampleBuffer.begin(), m_scopeSampleBuffer.end(), true); // true = real samples for what it's worth } m_settingsMutex.unlock(); } void DSDDemod::start() { m_audioFifo1.clear(); m_audioFifo2.clear(); m_phaseDiscri.reset(); applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); } void DSDDemod::stop() { } bool DSDDemod::handleMessage(const Message& cmd) { qDebug() << "DSDDemod::handleMessage"; if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; qDebug() << "DSDDemod::handleMessage: MsgChannelizerNotification: inputSampleRate: " << notif.getSampleRate() << " inputFrequencyOffset: " << notif.getFrequencyOffset(); applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset()); return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; qDebug("DSDDemod::handleMessage: MsgConfigureChannelizer"); m_channelizer->configure(m_channelizer->getInputMessageQueue(), cfg.getSampleRate(), cfg.getCenterFrequency()); return true; } else if (MsgConfigureDSDDemod::match(cmd)) { MsgConfigureDSDDemod& cfg = (MsgConfigureDSDDemod&) cmd; qDebug("DSDDemod::handleMessage: MsgConfigureDSDDemod: m_rfBandwidth"); applySettings(cfg.getSettings(), cfg.getForce()); return true; } else if (MsgConfigureMyPosition::match(cmd)) { MsgConfigureMyPosition& cfg = (MsgConfigureMyPosition&) cmd; m_dsdDecoder.setMyPoint(cfg.getMyLatitude(), cfg.getMyLongitude()); return true; } else if (DSPConfigureAudio::match(cmd)) { DSPConfigureAudio& cfg = (DSPConfigureAudio&) cmd; uint32_t sampleRate = cfg.getSampleRate(); qDebug() << "DSDDemod::handleMessage: DSPConfigureAudio:" << " sampleRate: " << sampleRate; if (sampleRate != m_audioSampleRate) { applyAudioSampleRate(sampleRate); } return true; } else if (BasebandSampleSink::MsgThreadedSink::match(cmd)) { return true; } else if (DSPSignalNotification::match(cmd)) { return true; } else { return false; } } void DSDDemod::applyAudioSampleRate(int sampleRate) { int upsampling = sampleRate / 8000; qDebug("DSDDemod::applyAudioSampleRate: audio rate: %d upsample by %d", sampleRate, upsampling); if (sampleRate % 8000 != 0) { qDebug("DSDDemod::applyAudioSampleRate: audio will sound best with sample rates that are integer multiples of 8 kS/s"); } m_dsdDecoder.setUpsampling(upsampling); m_audioSampleRate = sampleRate; } void DSDDemod::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force) { qDebug() << "DSDDemod::applyChannelSettings:" << " inputSampleRate: " << inputSampleRate << " inputFrequencyOffset: " << inputFrequencyOffset; if ((inputFrequencyOffset != m_inputFrequencyOffset) || (inputSampleRate != m_inputSampleRate) || force) { m_nco.setFreq(-inputFrequencyOffset, inputSampleRate); } if ((inputSampleRate != m_inputSampleRate) || force) { m_settingsMutex.lock(); m_interpolator.create(16, inputSampleRate, (m_settings.m_rfBandwidth) / 2.2); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) inputSampleRate / (Real) 48000; m_settingsMutex.unlock(); } m_inputSampleRate = inputSampleRate; m_inputFrequencyOffset = inputFrequencyOffset; } void DSDDemod::applySettings(const DSDDemodSettings& settings, bool force) { qDebug() << "DSDDemod::applySettings: " << " m_inputFrequencyOffset: " << m_settings.m_inputFrequencyOffset << " m_rfBandwidth: " << m_settings.m_rfBandwidth << " m_fmDeviation: " << m_settings.m_fmDeviation << " m_demodGain: " << m_settings.m_demodGain << " m_volume: " << m_settings.m_volume << " m_baudRate: " << m_settings.m_baudRate << " m_squelchGate" << m_settings.m_squelchGate << " m_squelch: " << m_settings.m_squelch << " m_audioMute: " << m_settings.m_audioMute << " m_enableCosineFiltering: " << m_settings.m_enableCosineFiltering << " m_syncOrConstellation: " << m_settings.m_syncOrConstellation << " m_slot1On: " << m_settings.m_slot1On << " m_slot2On: " << m_settings.m_slot2On << " m_tdmaStereo: " << m_settings.m_tdmaStereo << " m_pllLock: " << m_settings.m_pllLock << " m_udpAddress: " << m_settings.m_udpAddress << " m_udpPort: " << m_settings.m_udpPort << " m_highPassFilter: "<< m_settings.m_highPassFilter << " m_audioDeviceName: " << settings.m_audioDeviceName << " force: " << force; if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { m_settingsMutex.lock(); m_interpolator.create(16, m_inputSampleRate, (settings.m_rfBandwidth) / 2.2); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_inputSampleRate / (Real) 48000; //m_phaseDiscri.setFMScaling((float) settings.m_rfBandwidth / (float) settings.m_fmDeviation); m_settingsMutex.unlock(); } if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) { m_phaseDiscri.setFMScaling(48000.0f / (2.0f*settings.m_fmDeviation)); } if ((settings.m_squelchGate != m_settings.m_squelchGate) || force) { m_squelchGate = 480 * settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate m_squelchCount = 0; // reset squelch open counter } if ((settings.m_squelch != m_settings.m_squelch) || force) { // input is a value in dB m_squelchLevel = std::pow(10.0, settings.m_squelch / 10.0); } if ((settings.m_volume != m_settings.m_volume) || force) { m_dsdDecoder.setAudioGain(settings.m_volume); } if ((settings.m_baudRate != m_settings.m_baudRate) || force) { m_dsdDecoder.setBaudRate(settings.m_baudRate); } if ((settings.m_enableCosineFiltering != m_settings.m_enableCosineFiltering) || force) { m_dsdDecoder.enableCosineFiltering(settings.m_enableCosineFiltering); } if ((settings.m_tdmaStereo != m_settings.m_tdmaStereo) || force) { m_dsdDecoder.setTDMAStereo(settings.m_tdmaStereo); } if ((settings.m_pllLock != m_settings.m_pllLock) || force) { m_dsdDecoder.setSymbolPLLLock(settings.m_pllLock); } if ((settings.m_highPassFilter != m_settings.m_highPassFilter) || force) { m_dsdDecoder.useHPMbelib(settings.m_highPassFilter); } if ((settings.m_audioDeviceName != m_settings.m_audioDeviceName) || force) { AudioDeviceManager *audioDeviceManager = DSPEngine::instance()->getAudioDeviceManager(); int audioDeviceIndex = audioDeviceManager->getOutputDeviceIndex(settings.m_audioDeviceName); //qDebug("AMDemod::applySettings: audioDeviceName: %s audioDeviceIndex: %d", qPrintable(settings.m_audioDeviceName), audioDeviceIndex); audioDeviceManager->addAudioSink(&m_audioFifo1, getInputMessageQueue(), audioDeviceIndex); audioDeviceManager->addAudioSink(&m_audioFifo2, getInputMessageQueue(), audioDeviceIndex); uint32_t audioSampleRate = audioDeviceManager->getOutputSampleRate(audioDeviceIndex); if (m_audioSampleRate != audioSampleRate) { applyAudioSampleRate(audioSampleRate); } } m_settings = settings; } QByteArray DSDDemod::serialize() const { return m_settings.serialize(); } bool DSDDemod::deserialize(const QByteArray& data) { if (m_settings.deserialize(data)) { MsgConfigureDSDDemod *msg = MsgConfigureDSDDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return true; } else { m_settings.resetToDefaults(); MsgConfigureDSDDemod *msg = MsgConfigureDSDDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return false; } }