/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016-2019, 2023 Edouard Griffiths, F4EXB // // Copyright (C) 2023 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "inthalfbandfilter.h" #include "dspcommands.h" #include "hbfilterchainconverter.h" #include "upchannelizer.h" UpChannelizer::UpChannelizer(ChannelSampleSource* sampleSource) : m_filterChainSetMode(false), m_sampleSource(sampleSource), m_basebandSampleRate(0), m_requestedInputSampleRate(0), m_requestedCenterFrequency(0), m_channelSampleRate(0), m_channelFrequencyOffset(0), m_log2Interp(0), m_filterChainHash(0) { } UpChannelizer::~UpChannelizer() { freeFilterChain(); } void UpChannelizer::pullOne(Sample& sample) { if (m_sampleSource == nullptr) { m_sampleBuffer.clear(); return; } unsigned int log2Interp = m_filterStages.size(); if (log2Interp == 0) // optimization when no downsampling is done anyway { m_sampleSource->pullOne(sample); } else { FilterStages::iterator stage = m_filterStages.begin(); std::vector::iterator stageSample = m_stageSamples.begin(); for (; stage != m_filterStages.end(); ++stage, ++stageSample) { if(stage == m_filterStages.end() - 1) { if ((*stage)->work(&m_sampleIn, &(*stageSample))) { m_sampleSource->pullOne(m_sampleIn); // get new input sample } } else { if (!(*stage)->work(&(*(stageSample+1)), &(*stageSample))) { break; } } } sample = *m_stageSamples.begin(); } } void UpChannelizer::pull(SampleVector::iterator begin, unsigned int nbSamples) { if (m_sampleSource == nullptr) { m_sampleBuffer.clear(); return; } unsigned int log2Interp = m_filterStages.size(); if (log2Interp == 0) // optimization when no downsampling is done anyway { m_sampleSource->pull(begin, nbSamples); } else { std::for_each( begin, begin + nbSamples, [this](Sample& s) { pullOne(s); } ); } } void UpChannelizer::prefetch(unsigned int nbSamples) { unsigned int log2Interp = m_filterStages.size(); m_sampleSource->prefetch(nbSamples/(1< stageIndexes; m_channelFrequencyOffset = m_basebandSampleRate * HBFilterChainConverter::convertToIndexes(m_log2Interp, m_filterChainHash, stageIndexes); m_requestedCenterFrequency = m_channelFrequencyOffset; freeFilterChain(); m_channelFrequencyOffset = m_basebandSampleRate * setFilterChain(stageIndexes); m_channelSampleRate = m_basebandSampleRate / (1 << m_filterStages.size()); m_requestedInputSampleRate = m_channelSampleRate; qDebug() << "UpChannelizer::applyInterpolation:" << " m_log2Interp:" << m_log2Interp << " m_filterChainHash:" << m_filterChainHash << " out:" << m_basebandSampleRate << " in:" << m_channelSampleRate << " fc:" << m_channelFrequencyOffset; } #ifdef USE_SSE4_1 UpChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterEO1), m_workFunction(0) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterEO1::workInterpolateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterEO1::workInterpolateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterEO1::workInterpolateUpperHalf; break; } } #else UpChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterDB), m_workFunction(0) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterDB::workInterpolateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterDB::workInterpolateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterDB::workInterpolateUpperHalf; break; } } #endif UpChannelizer::FilterStage::~FilterStage() { delete m_filter; } Real UpChannelizer::channelMinSpace(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) { Real leftSpace = chanStart - sigStart; Real rightSpace = sigEnd - chanEnd; return std::min(leftSpace, rightSpace); } Real UpChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) { Real sigBw = sigEnd - sigStart; Real chanBw = chanEnd - chanStart; Real rot = sigBw / 4; Sample s; std::array filterMinSpaces; // Array of left, center and right filter min spaces respectively filterMinSpaces[0] = channelMinSpace(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd); filterMinSpaces[1] = channelMinSpace(sigStart + rot, sigEnd - rot, chanStart, chanEnd); filterMinSpaces[2] = channelMinSpace(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd); auto maxIt = std::max_element(filterMinSpaces.begin(), filterMinSpaces.end()); int maxIndex = maxIt - filterMinSpaces.begin(); Real maxValue = *maxIt; qDebug("UpChannelizer::createFilterChain: Signal [%.1f, %.1f] (BW %.1f) Channel [%.1f, %.1f] (BW %.1f) Selected: %d (fit %.1f)", sigStart, sigEnd, sigBw, chanStart, chanEnd, chanBw, maxIndex, maxValue); if ((sigStart < sigEnd) && (chanStart < chanEnd) && (maxValue >= chanBw/8.0)) { if (maxIndex == 0) { m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); m_stageSamples.push_back(s); return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd); } if (maxIndex == 1) { m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); m_stageSamples.push_back(s); return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd); } if (maxIndex == 2) { m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); m_stageSamples.push_back(s); return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd); } } Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart); qDebug() << "UpChannelizer::createFilterChain: complete:" << " #stages: " << m_filterStages.size() << " BW: " << sigBw << " ofs: " << ofs; return ofs; } double UpChannelizer::setFilterChain(const std::vector& stageIndexes) { // filters are described from lower to upper level but the chain is constructed the other way round std::vector::const_reverse_iterator rit = stageIndexes.rbegin(); double ofs = 0.0, ofs_stage = 0.25; Sample s; // Each index is a base 3 number with 0 = low, 1 = center, 2 = high // Functions at upper level will convert a number to base 3 to describe the filter chain. Common converting // algorithms will go from LSD to MSD. This explains the reverse order. for (; rit != stageIndexes.rend(); ++rit) { if (*rit == 0) { m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); m_stageSamples.push_back(s); ofs -= ofs_stage; qDebug("UpChannelizer::setFilterChain: lower half: ofs: %f", ofs); } else if (*rit == 1) { m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); m_stageSamples.push_back(s); qDebug("UpChannelizer::setFilterChain: center: ofs: %f", ofs); } else if (*rit == 2) { m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); m_stageSamples.push_back(s); ofs += ofs_stage; qDebug("UpChannelizer::setFilterChain: upper half: ofs: %f", ofs); } ofs_stage /= 2; } qDebug() << "UpChannelizer::setFilterChain: complete:" << " #stages: " << m_filterStages.size() << " ofs: " << ofs; return ofs; } void UpChannelizer::freeFilterChain() { for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it) delete *it; m_filterStages.clear(); m_stageSamples.clear(); }