/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2018 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "util/simpleserializer.h" #include "testsourcesettings.h" TestSourceSettings::TestSourceSettings() { resetToDefaults(); } void TestSourceSettings::resetToDefaults() { m_centerFrequency = 435000*1000; m_frequencyShift = 0; m_sampleRate = 768*1000; m_log2Decim = 4; m_fcPos = FC_POS_CENTER; m_sampleSizeIndex = 0; m_amplitudeBits = 127; m_autoCorrOptions = AutoCorrNone; m_modulation = ModulationNone; m_modulationTone = 44; // 440 Hz m_amModulation = 50; // 50% m_fmDeviation = 50; // 5 kHz m_dcFactor = 0.0f; m_iFactor = 0.0f; m_qFactor = 0.0f; m_phaseImbalance = 0.0f; m_useReverseAPI = false; m_reverseAPIAddress = "127.0.0.1"; m_reverseAPIPort = 8888; m_reverseAPIDeviceIndex = 0; m_workspaceIndex = 0; } QByteArray TestSourceSettings::serialize() const { SimpleSerializer s(1); s.writeS32(2, m_frequencyShift); s.writeU32(3, m_sampleRate); s.writeU32(4, m_log2Decim); s.writeS32(5, (int) m_fcPos); s.writeU32(6, m_sampleSizeIndex); s.writeS32(7, m_amplitudeBits); s.writeS32(8, (int) m_autoCorrOptions); s.writeFloat(10, m_dcFactor); s.writeFloat(11, m_iFactor); s.writeFloat(12, m_qFactor); s.writeFloat(13, m_phaseImbalance); s.writeS32(14, (int) m_modulation); s.writeS32(15, m_modulationTone); s.writeS32(16, m_amModulation); s.writeS32(17, m_fmDeviation); s.writeBool(18, m_useReverseAPI); s.writeString(19, m_reverseAPIAddress); s.writeU32(20, m_reverseAPIPort); s.writeU32(21, m_reverseAPIDeviceIndex); s.writeS32(22, m_workspaceIndex); s.writeBlob(23, m_geometryBytes); return s.final(); } bool TestSourceSettings::deserialize(const QByteArray& data) { SimpleDeserializer d(data); if (!d.isValid()) { resetToDefaults(); return false; } if (d.getVersion() == 1) { int intval; uint32_t utmp; d.readS32(2, &m_frequencyShift, 0); d.readU32(3, &m_sampleRate, 768*1000); d.readU32(4, &m_log2Decim, 4); d.readS32(5, &intval, 0); m_fcPos = (fcPos_t) intval; d.readU32(6, &m_sampleSizeIndex, 0); d.readS32(7, &m_amplitudeBits, 128); d.readS32(8, &intval, 0); if (intval < 0 || intval > (int) AutoCorrLast) { m_autoCorrOptions = AutoCorrNone; } else { m_autoCorrOptions = (AutoCorrOptions) intval; } d.readFloat(10, &m_dcFactor, 0.0f); d.readFloat(11, &m_iFactor, 0.0f); d.readFloat(12, &m_qFactor, 0.0f); d.readFloat(13, &m_phaseImbalance, 0.0f); d.readS32(14, &intval, 0); if (intval < 0 || intval > (int) ModulationLast) { m_modulation = ModulationNone; } else { m_modulation = (Modulation) intval; } d.readS32(15, &m_modulationTone, 44); d.readS32(16, &m_amModulation, 50); d.readS32(17, &m_fmDeviation, 50); d.readBool(18, &m_useReverseAPI, false); d.readString(19, &m_reverseAPIAddress, "127.0.0.1"); d.readU32(20, &utmp, 0); if ((utmp > 1023) && (utmp < 65535)) { m_reverseAPIPort = utmp; } else { m_reverseAPIPort = 8888; } d.readU32(21, &utmp, 0); m_reverseAPIDeviceIndex = utmp > 99 ? 99 : utmp; d.readS32(22, &m_workspaceIndex, 0); d.readBlob(23, &m_geometryBytes); return true; } else { resetToDefaults(); return false; } }