/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "audio/audiooutputdevice.h" #include "dsp/dspengine.h" #include "dsp/dspcommands.h" #include "dsp/devicesamplemimo.h" #include "util/db.h" #include "wfmdemodsink.h" const unsigned int WFMDemodSink::m_rfFilterFftLength = 1024; WFMDemodSink::WFMDemodSink() : m_channelSampleRate(384000), m_audioSampleRate(48000), m_channelFrequencyOffset(0), m_squelchOpen(false), m_magsq(0.0f), m_magsqSum(0.0f), m_magsqPeak(0.0f), m_magsqCount(0), m_audioFifo(250000) { m_rfFilter = new fftfilt(-50000.0 / 384000.0, 50000.0 / 384000.0, m_rfFilterFftLength); m_phaseDiscri.setFMScaling(384000/75000); m_audioBuffer.resize(16384); m_audioBufferFill = 0; applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } WFMDemodSink::~WFMDemodSink() { delete m_rfFilter; } void WFMDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { Complex ci; fftfilt::cmplx *rf; int rf_out; Real demod; double msq; float fmDev; for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); rf_out = m_rfFilter->runFilt(c, &rf); // filter RF before demod for (int i = 0 ; i < rf_out; i++) { msq = rf[i].real()*rf[i].real() + rf[i].imag()*rf[i].imag(); Real magsq = msq / (SDR_RX_SCALED*SDR_RX_SCALED); m_magsqSum += magsq; m_movingAverage(magsq); if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; if (magsq >= m_squelchLevel) { if (m_squelchState < m_settings.m_rfBandwidth / 10) { // twice attack and decay rate m_squelchState++; } } else { if (m_squelchState > 0) { m_squelchState--; } } m_squelchOpen = (m_squelchState > (m_settings.m_rfBandwidth / 20)); if (m_squelchOpen && !m_settings.m_audioMute) { // squelch open and not mute demod = m_phaseDiscri.phaseDiscriminatorDelta(rf[i], msq, fmDev); } else { demod = 0; } Complex e(demod, 0); if (m_interpolator.decimate(&m_interpolatorDistanceRemain, e, &ci)) { qint16 sample = (qint16)(ci.real() * 3276.8f * m_settings.m_volume); m_sampleBuffer.push_back(Sample(sample, sample)); m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; ++m_audioBufferFill; if(m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill); if (res != m_audioBufferFill) { qDebug("WFMDemodSink::feed: %u/%u audio samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_interpolatorDistanceRemain += m_interpolatorDistance; } } } if (m_audioBufferFill > 0) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill); if (res != m_audioBufferFill) { qDebug("WFMDemodSink::feed: %u/%u tail samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_sampleBuffer.clear(); } void WFMDemodSink::applyAudioSampleRate(int sampleRate) { if (sampleRate < 0) { qWarning("WFMDemodSink::applyAudioSampleRate: invalid sample rate: %d", sampleRate); return; } qDebug("WFMDemodSink::applyAudioSampleRate: %u", sampleRate); m_interpolator.create(16, m_channelSampleRate, m_settings.m_afBandwidth); m_interpolatorDistanceRemain = (Real) m_channelSampleRate / sampleRate; m_interpolatorDistance = (Real) m_channelSampleRate / (Real) sampleRate; m_audioSampleRate = sampleRate; } void WFMDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "WFMDemodSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((channelSampleRate != m_channelSampleRate) || force) { qDebug() << "WFMDemod::applyChannelSettings: m_interpolator.create"; m_interpolator.create(16, channelSampleRate, m_settings.m_afBandwidth); m_interpolatorDistanceRemain = (Real) channelSampleRate / (Real) m_audioSampleRate; m_interpolatorDistance = (Real) channelSampleRate / (Real) m_audioSampleRate; qDebug() << "WFMDemod::applySettings: m_rfFilter->create_filter"; Real lowCut = -(m_settings.m_rfBandwidth / 2.0) / channelSampleRate; Real hiCut = (m_settings.m_rfBandwidth / 2.0) / channelSampleRate; m_rfFilter->create_filter(lowCut, hiCut); m_fmExcursion = m_settings.m_rfBandwidth / (Real) channelSampleRate; m_phaseDiscri.setFMScaling(1.0f/m_fmExcursion); qDebug("WFMDemod::applySettings: m_fmExcursion: %f", m_fmExcursion); } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void WFMDemodSink::applySettings(const WFMDemodSettings& settings, bool force) { qDebug() << "WFMDemodSink::applySettings:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_afBandwidth: " << settings.m_afBandwidth << " m_volume: " << settings.m_volume << " m_squelch: " << settings.m_squelch << " m_audioDeviceName: " << settings.m_audioDeviceName << " m_audioMute: " << settings.m_audioMute << " m_streamIndex: " << settings.m_streamIndex << " m_useReverseAPI: " << settings.m_useReverseAPI << " m_reverseAPIAddress: " << settings.m_reverseAPIAddress << " m_reverseAPIPort: " << settings.m_reverseAPIPort << " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex << " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex << " force: " << force; if((settings.m_afBandwidth != m_settings.m_afBandwidth) || (settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { qDebug() << "WFMDemodSink::applySettings: m_interpolator.create"; m_interpolator.create(16, m_channelSampleRate, settings.m_afBandwidth); m_interpolatorDistanceRemain = (Real) m_channelSampleRate / (Real) m_audioSampleRate; m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_audioSampleRate; qDebug() << "WFMDemodSink::applySettings: m_rfFilter->create_filter"; Real lowCut = -(settings.m_rfBandwidth / 2.0) / m_channelSampleRate; Real hiCut = (settings.m_rfBandwidth / 2.0) / m_channelSampleRate; m_rfFilter->create_filter(lowCut, hiCut); m_fmExcursion = settings.m_rfBandwidth / (Real) m_channelSampleRate; m_phaseDiscri.setFMScaling(1.0f/m_fmExcursion); qDebug("WFMDemodSink::applySettings: m_fmExcursion: %f", m_fmExcursion); } if ((settings.m_squelch != m_settings.m_squelch) || force) { qDebug() << "WFMDemodSink::applySettings: set m_squelchLevel"; m_squelchLevel = pow(10.0, settings.m_squelch / 10.0); } m_settings = settings; }