/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 Edouard Griffiths, F4EXB // // Copyright (C) 2020 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_RAISEDCOSINE_H #define INCLUDE_RAISEDCOSINE_H #define _USE_MATH_DEFINES #include #include "dsp/dsptypes.h" // Raised-cosine low-pass filter for pulse shaping, without intersymbol interference (ISI) // https://en.wikipedia.org/wiki/Raised-cosine_filter // This could be optimised in to a polyphase filter, as samplesPerSymbol-1 inputs // to filter() should be zero, as the data is upsampled to the sample rate template class RaisedCosine { public: RaisedCosine() : m_ptr(0) { } // beta - roll-off factor // symbolSpan - number of symbols over which the filter is spread // samplesPerSymbol - number of samples per symbol void create(double beta, int symbolSpan, int samplesPerSymbol) { int nTaps = symbolSpan * samplesPerSymbol + 1; int i; // check constraints if(!(nTaps & 1)) { qDebug("Raised cosine filter has to have an odd number of taps"); nTaps++; } // make room m_samples.resize(nTaps); for(int i = 0; i < nTaps; i++) m_samples[i] = 0; m_ptr = 0; m_taps.resize(nTaps / 2 + 1); // calculate filter taps for(i = 0; i < nTaps / 2 + 1; i++) { double t = (i - (nTaps / 2)) / (double)samplesPerSymbol; double denominator = 1.0 - std::pow(2.0 * beta * t, 2.0); double sinc; if (denominator != 0.0) { if (t == 0) sinc = 1.0; else sinc = sin(M_PI*t)/(M_PI*t); m_taps[i] = sinc * (cos(M_PI*beta*t) / denominator) / (double)samplesPerSymbol; } else m_taps[i] = beta * sin(M_PI/(2.0*beta)) / (2.0*samplesPerSymbol); } // normalize double sum = 0; for(i = 0; i < (int)m_taps.size() - 1; i++) sum += std::pow(m_taps[i], 2.0) * 2; sum += std::pow(m_taps[i], 2.0); sum = std::sqrt(sum); for(i = 0; i < (int)m_taps.size(); i++) m_taps[i] /= sum; } Type filter(Type sample) { Type acc = 0; int a = m_ptr; int b = a - 1; int i, n_taps, size; m_samples[m_ptr] = sample; size = m_samples.size(); // Valgrind optim (2) while (b < 0) { b += size; } n_taps = m_taps.size() - 1; // Valgrind optim for (i = 0; i < n_taps; i++) { acc += (m_samples[a] + m_samples[b]) * m_taps[i]; a++; while (a >= size) { a -= size; } b--; while(b < 0) { b += size; } } acc += m_samples[a] * m_taps[i]; m_ptr++; while(m_ptr >= size) { m_ptr -= size; } return acc; } private: std::vector m_taps; std::vector m_samples; int m_ptr; }; #endif // INCLUDE_RAISEDCOSINE_H