///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see . //
///////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include "audio/audiooutput.h"
#include "dsp/dspcommands.h"
#include "dsp/pidcontroller.h"
#include "wfmdemod.h"
//#include
MESSAGE_CLASS_DEFINITION(WFMDemod::MsgConfigureWFMDemod, Message)
WFMDemod::WFMDemod(AudioFifo* audioFifo, SampleSink* sampleSink) :
m_sampleSink(sampleSink),
m_audioFifo(audioFifo)
{
m_config.m_inputSampleRate = 384000;
m_config.m_inputFrequencyOffset = 0;
m_config.m_rfBandwidth = 180000;
m_config.m_afBandwidth = 15000;
m_config.m_squelch = -60.0;
m_config.m_volume = 2.0;
m_config.m_audioSampleRate = 48000;
m_rfFilter = new fftfilt(-50000.0 / 384000.0, 50000.0 / 384000.0, rfFilterFftLength);
apply();
m_audioBuffer.resize(16384);
m_audioBufferFill = 0;
m_movingAverage.resize(16, 0);
}
WFMDemod::~WFMDemod()
{
if (m_rfFilter)
delete m_rfFilter;
}
void WFMDemod::configure(MessageQueue* messageQueue, Real rfBandwidth, Real afBandwidth, Real volume, Real squelch)
{
Message* cmd = MsgConfigureWFMDemod::create(rfBandwidth, afBandwidth, volume, squelch);
cmd->submit(messageQueue, this);
}
void WFMDemod::feed(SampleVector::const_iterator begin, SampleVector::const_iterator end, bool firstOfBurst)
{
Complex ci;
fftfilt::cmplx *rf;
int rf_out;
Real msq, demod;
if (m_audioFifo->size() <= 0)
return;
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real() / 32768.0, it->imag() / 32768.0);
c *= m_nco.nextIQ();
rf_out = m_rfFilter->runFilt(c, &rf); // filter RF before demod
for (int i =0 ; i = m_squelchLevel)
m_squelchState = m_running.m_rfBandwidth / 20; // decay rate
if(m_squelchState > 0)
{
m_squelchState--;
// Alternative without atan
// http://www.embedded.com/design/configurable-systems/4212086/DSP-Tricks--Frequency-demodulation-algorithms-
// in addition it needs scaling by instantaneous magnitude squared and volume (0..10) adjustment factor
Real ip = rf[i].real() - m_m2Sample.real();
Real qp = rf[i].imag() - m_m2Sample.imag();
Real h1 = m_m1Sample.real() * qp;
Real h2 = m_m1Sample.imag() * ip;
demod = (h1 - h2) / (msq * 10.0);
}
else
{
demod = 0;
}
m_m2Sample = m_m1Sample;
m_m1Sample = rf[i];
Complex e(demod, 0);
if(m_interpolator.interpolate(&m_interpolatorDistanceRemain, e, &ci))
{
quint16 sample = (qint16)(ci.real() * 3000 * m_running.m_volume);
m_sampleBuffer.push_back(Sample(sample, sample));
m_audioBuffer[m_audioBufferFill].l = sample;
m_audioBuffer[m_audioBufferFill].r = sample;
++m_audioBufferFill;
if(m_audioBufferFill >= m_audioBuffer.size())
{
uint res = m_audioFifo->write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1);
if(res != m_audioBufferFill)
qDebug("lost %u samples", m_audioBufferFill - res);
m_audioBufferFill = 0;
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
#if 0
{
if(m_interpolator.interpolate(&m_interpolatorDistanceRemain, e, &ci))
{
m_sampleBuffer.push_back(Sample(ci.real() * 32767.0, ci.imag() * 32767.0));
m_movingAverage.feed(ci.real() * ci.real() + ci.imag() * ci.imag());
if(m_movingAverage.average() >= m_squelchLevel)
m_squelchState = m_running.m_audioSampleRate/ 20;
qint16 sample;
if(m_squelchState > 0) {
m_squelchState--;
/*
Real argument = arg(ci);
argument /= M_PI;
Real demod = argument - m_lastArgument;
m_lastArgument = argument;
*/
//ci *= 32768.0;
/*
Complex d = conj(m_lastSample) * ci;
m_lastSample = ci;
Real demod = atan2(d.imag(), d.real());
*/
//m_lastSample = ci;
//std::cerr << "demod=" << demod << std::endl;
/*
Real argument = atan2(ci.real()*m_lastSample.imag() - m_lastSample.real()*ci.imag(),
ci.real()*m_lastSample.real() + ci.imag()*m_lastSample.imag());
argument /= M_PI;
Real demod = argument - m_lastArgument;
m_lastArgument = argument;
m_lastSample = ci;
*/
//Real demod = arctan2(d.imag(), d.real());
/*
Real argument1 = arg(ci);//atan2(ci.imag(), ci.real());
Real argument2 = m_lastSample.real();
Real demod = angleDist(argument2, argument1);
m_lastSample = Complex(argument1, 0);
*/
//demod /= M_PI;
demod = m_lowpass.filter(demod);
/*
if(demod < -1)
demod = -1;
else if(demod > 1)
demod = 1;
*/
demod *= m_running.m_volume;
sample = demod * 64;
} else {
sample = 0;
}
m_audioBuffer[m_audioBufferFill].l = sample;
m_audioBuffer[m_audioBufferFill].r = sample;
++m_audioBufferFill;
if(m_audioBufferFill >= m_audioBuffer.size()) {
uint res = m_audioFifo->write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1);
if(res != m_audioBufferFill)
qDebug("lost %u audio samples", m_audioBufferFill - res);
m_audioBufferFill = 0;
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
#endif
}
if(m_audioBufferFill > 0) {
uint res = m_audioFifo->write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1);
if(res != m_audioBufferFill)
qDebug("lost %u samples", m_audioBufferFill - res);
m_audioBufferFill = 0;
}
if(m_sampleSink != NULL)
m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), false);
m_sampleBuffer.clear();
}
void WFMDemod::start()
{
m_squelchState = 0;
m_audioFifo->clear();
m_interpolatorRegulation = 0.9999;
m_interpolatorDistance = 1.0;
m_interpolatorDistanceRemain = 0.0;
m_m1Sample = 0;
}
void WFMDemod::stop()
{
}
bool WFMDemod::handleMessage(Message* cmd)
{
if(DSPSignalNotification::match(cmd)) {
DSPSignalNotification* signal = (DSPSignalNotification*)cmd;
m_config.m_inputSampleRate = signal->getSampleRate();
m_config.m_inputFrequencyOffset = signal->getFrequencyOffset();
apply();
cmd->completed();
return true;
} else if(MsgConfigureWFMDemod::match(cmd)) {
MsgConfigureWFMDemod* cfg = (MsgConfigureWFMDemod*)cmd;
m_config.m_rfBandwidth = cfg->getRFBandwidth();
m_config.m_afBandwidth = cfg->getAFBandwidth();
m_config.m_volume = cfg->getVolume();
m_config.m_squelch = cfg->getSquelch();
apply();
return true;
} else {
if(m_sampleSink != NULL)
return m_sampleSink->handleMessage(cmd);
else return false;
}
}
void WFMDemod::apply()
{
if((m_config.m_inputFrequencyOffset != m_running.m_inputFrequencyOffset) ||
(m_config.m_inputSampleRate != m_running.m_inputSampleRate))
{
m_nco.setFreq(-m_config.m_inputFrequencyOffset, m_config.m_inputSampleRate);
}
if((m_config.m_inputSampleRate != m_running.m_inputSampleRate) ||
(m_config.m_afBandwidth != m_running.m_afBandwidth))
{
m_interpolator.create(16, m_config.m_inputSampleRate, m_config.m_afBandwidth);
m_interpolatorDistanceRemain = (Real) m_config.m_inputSampleRate / m_config.m_audioSampleRate;
m_interpolatorDistance = (Real) m_config.m_inputSampleRate / (Real) m_config.m_audioSampleRate;
}
if((m_config.m_inputSampleRate != m_running.m_inputSampleRate) ||
(m_config.m_rfBandwidth != m_running.m_rfBandwidth) ||
(m_config.m_inputFrequencyOffset != m_running.m_inputFrequencyOffset))
{
Real lowCut = (m_config.m_inputFrequencyOffset - (m_config.m_rfBandwidth / 2.0)) / m_config.m_inputSampleRate;
Real hiCut = (m_config.m_inputFrequencyOffset + (m_config.m_rfBandwidth / 2.0)) / m_config.m_inputSampleRate;
m_rfFilter->create_filter(lowCut, hiCut);
}
if((m_config.m_afBandwidth != m_running.m_afBandwidth) ||
(m_config.m_audioSampleRate != m_running.m_audioSampleRate))
{
m_lowpass.create(21, m_config.m_audioSampleRate, m_config.m_afBandwidth);
}
if(m_config.m_squelch != m_running.m_squelch) {
m_squelchLevel = pow(10.0, m_config.m_squelch / 20.0);
m_squelchLevel *= m_squelchLevel;
}
m_running.m_inputSampleRate = m_config.m_inputSampleRate;
m_running.m_inputFrequencyOffset = m_config.m_inputFrequencyOffset;
m_running.m_rfBandwidth = m_config.m_rfBandwidth;
m_running.m_squelch = m_config.m_squelch;
m_running.m_volume = m_config.m_volume;
m_running.m_audioSampleRate = m_config.m_audioSampleRate;
/*
std::cerr << "WFMDemod::apply: in=" << m_config.m_inputSampleRate
<< ", df=" << m_config.m_inputFrequencyOffset
<< ", rfbw=" << m_config.m_rfBandwidth
<< ", afbw=" << m_config.m_afBandwidth
<< std::endl;
*/
}