/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "audio/audiooutputdevice.h" #include "dsp/dspengine.h" #include "dsp/dspcommands.h" #include "dsp/devicesamplemimo.h" #include "dsp/spectrumvis.h" #include "dsp/datafifo.h" #include "device/deviceapi.h" #include "util/db.h" #include "util/messagequeue.h" #include "maincore.h" #include "ft8demodsink.h" const int FT8DemodSink::m_ssbFftLen = 1024; const int FT8DemodSink::m_agcTarget = 3276; // 32768/10 -10 dB amplitude => -20 dB power: center of normal signal FT8DemodSink::LevelRMS::LevelRMS() { m_sum = 0.0f; m_peak = 0.0f; m_n = 0; m_reset = true; } void FT8DemodSink::LevelRMS::accumulate(float level) { if (m_reset) { m_sum = level * level; m_peak = std::fabs(level); m_n = 1; m_reset = false; } else { m_sum += level * level; m_peak = std::max(m_peak, std::fabs(level)); m_n++; } } FT8DemodSink::FT8DemodSink() : m_agc(12000, m_agcTarget, 1e-2), m_agcActive(false), m_audioActive(false), m_spectrumSink(nullptr), m_audioFifo(24000), m_ft8SampleRate(12000), m_levelInNbSamples(1200) // 100 ms { m_Bandwidth = 5000; m_LowCutoff = 300; m_volume = 2.0; m_spanLog2 = 3; m_channelSampleRate = 48000; m_channelFrequencyOffset = 0; m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_undersampleCount = 0; m_sum = 0; m_demodBuffer.resize(1<<12); m_demodBufferFill = 0; m_usb = true; m_magsq = 0.0f; m_magsqSum = 0.0f; m_magsqPeak = 0.0f; m_magsqCount = 0; m_agc.setThresholdEnable(false); // no squelch m_agc.setClamping(false); // no clamping SSBFilter = new fftfilt(m_LowCutoff / m_ft8SampleRate, m_Bandwidth / m_ft8SampleRate, m_ssbFftLen); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); applySettings(m_settings, true); } FT8DemodSink::~FT8DemodSink() { delete SSBFilter; } void FT8DemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { if (m_channelSampleRate == 0) { return; } Complex ci; for(SampleVector::const_iterator it = begin; it < end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolatorDistance < 1.0f) // interpolate { while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } else { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } } } void FT8DemodSink::processOneSample(Complex &ci) { fftfilt::cmplx *sideband; int n_out = 0; int decim = 1<<(m_spanLog2 - 1); unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1) n_out = SSBFilter->runSSB(ci, &sideband, m_usb); for (int i = 0; i < n_out; i++) { // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display // smart decimation with bit gain using float arithmetic (23 bits significand) m_sum += sideband[i]; if (!(m_undersampleCount++ & decim_mask)) { Real avgr = m_sum.real() / decim; Real avgi = m_sum.imag() / decim; m_magsq = (avgr * avgr + avgi * avgi) / (SDR_RX_SCALED*SDR_RX_SCALED); m_magsqSum += m_magsq; if (m_magsq > m_magsqPeak) { m_magsqPeak = m_magsq; } m_magsqCount++; m_sampleBuffer.push_back(Sample(avgr, avgi)); m_sum.real(0.0); m_sum.imag(0.0); } float agcVal = m_agcActive ? m_agc.feedAndGetValue(sideband[i]) : 0.1; fftfilt::cmplx z = sideband[i]*agcVal; m_audioActive = z.real() != 0.0; Real demod = (z.real() + z.imag()) * 0.7; qint16 sample = (qint16)(demod * m_volume); m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; m_demodBuffer[m_demodBufferFill++] = sample; calculateLevel(sample); if (m_demodBufferFill >= m_demodBuffer.size()) { QList dataPipes; MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes); if (dataPipes.size() > 0) { QList::iterator it = dataPipes.begin(); for (; it != dataPipes.end(); ++it) { DataFifo *fifo = qobject_cast((*it)->m_element); if (fifo) { fifo->write( (quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16), DataFifo::DataTypeI16 ); } } } m_demodBufferFill = 0; } ++m_audioBufferFill; if (m_audioBufferFill >= m_audioBuffer.size()) { // uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill); // if (res != m_audioBufferFill) { // qDebug("FT8DemodSink::processOneSample: %u/%u samples written", res, m_audioBufferFill); // } m_audioBufferFill = 0; } } if (m_spectrumSink && (m_sampleBuffer.size() != 0)) { m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), true); m_sampleBuffer.clear(); } } void FT8DemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "FT8DemodSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((m_channelFrequencyOffset != channelFrequencyOffset) || (m_channelSampleRate != channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((m_channelSampleRate != channelSampleRate) || force) { Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > channelSampleRate ? channelSampleRate : (m_Bandwidth * 1.5f); m_interpolator.create(16, channelSampleRate, interpolatorBandwidth, 2.0f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) channelSampleRate / (Real) m_ft8SampleRate; } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void FT8DemodSink::applyFT8SampleRate(int sampleRate) { qDebug("FT8DemodSink::applyFT8SampleRate: %d", sampleRate); Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f); m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_channelSampleRate / (Real) sampleRate; SSBFilter->create_filter(m_LowCutoff / (float) sampleRate, m_Bandwidth / (float) sampleRate, m_settings.m_filterBank[m_settings.m_filterIndex].m_fftWindow); m_audioFifo.setSize(sampleRate); m_ft8SampleRate = sampleRate; m_levelInNbSamples = m_ft8SampleRate / 10; // 100 ms QList pipes; MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes); if (pipes.size() > 0) { for (const auto& pipe : pipes) { MessageQueue* messageQueue = qobject_cast(pipe->m_element); if (messageQueue) { MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate); messageQueue->push(msg); } } } } void FT8DemodSink::applySettings(const FT8DemodSettings& settings, bool force) { qDebug() << "FT8DemodSink::applySettings:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_filterIndex: " << settings.m_filterIndex << " [m_spanLog2: " << settings.m_filterBank[settings.m_filterIndex].m_spanLog2 << " m_rfBandwidth: " << settings.m_filterBank[settings.m_filterIndex].m_rfBandwidth << " m_lowCutoff: " << settings.m_filterBank[settings.m_filterIndex].m_lowCutoff << " m_fftWindow: " << settings.m_filterBank[settings.m_filterIndex].m_fftWindow << "]" << " m_volume: " << settings.m_volume << " m_agcActive: " << settings.m_agc << " m_ft8SampleRate: " << settings.m_ft8SampleRate << " m_streamIndex: " << settings.m_streamIndex << " m_useReverseAPI: " << settings.m_useReverseAPI << " m_reverseAPIAddress: " << settings.m_reverseAPIAddress << " m_reverseAPIPort: " << settings.m_reverseAPIPort << " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex << " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex << " force: " << force; if((m_settings.m_filterBank[m_settings.m_filterIndex].m_rfBandwidth != settings.m_filterBank[settings.m_filterIndex].m_rfBandwidth) || (m_settings.m_filterBank[m_settings.m_filterIndex].m_lowCutoff != settings.m_filterBank[settings.m_filterIndex].m_lowCutoff) || (m_settings.m_filterBank[m_settings.m_filterIndex].m_fftWindow != settings.m_filterBank[settings.m_filterIndex].m_fftWindow) || force) { float band, lowCutoff; band = settings.m_filterBank[settings.m_filterIndex].m_rfBandwidth; lowCutoff = settings.m_filterBank[settings.m_filterIndex].m_lowCutoff; if (band < 0) { band = -band; lowCutoff = -lowCutoff; m_usb = false; } else { m_usb = true; } if (band < 100.0f) { band = 100.0f; lowCutoff = 0; } m_Bandwidth = band; m_LowCutoff = lowCutoff; Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f); m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_ft8SampleRate; SSBFilter->create_filter(m_LowCutoff / (float) m_ft8SampleRate, m_Bandwidth / (float) m_ft8SampleRate, settings.m_filterBank[settings.m_filterIndex].m_fftWindow); } if ((m_settings.m_volume != settings.m_volume) || force) { m_volume = settings.m_volume; m_volume /= 4.0; // for 3276.8 } m_spanLog2 = settings.m_filterBank[settings.m_filterIndex].m_spanLog2; m_agcActive = settings.m_agc; m_settings = settings; } void FT8DemodSink::calculateLevel(int16_t& sample) { if (m_levelIn.m_n >= m_levelInNbSamples) { m_rmsLevel = sqrt(m_levelIn.m_sum / m_levelInNbSamples); m_peakLevel = m_levelIn.m_peak; m_levelIn.m_reset = true; } m_levelIn.accumulate(sample/29491.2f); // scale on 90% (0.9 * 32768.0) }