/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "device/devicesinkapi.h" #include "dsp/upchannelizer.h" #include "dsp/threadedbasebandsamplesource.h" #include "util/db.h" #include "udpsinkmsg.h" #include "udpsink.h" MESSAGE_CLASS_DEFINITION(UDPSink::MsgConfigureUDPSink, Message) MESSAGE_CLASS_DEFINITION(UDPSink::MsgConfigureChannelizer, Message) MESSAGE_CLASS_DEFINITION(UDPSink::MsgUDPSinkSpectrum, Message) MESSAGE_CLASS_DEFINITION(UDPSink::MsgResetReadIndex, Message) const QString UDPSink::m_channelIdURI = "sdrangel.channeltx.udpsink"; const QString UDPSink::m_channelId = "UDPSink"; UDPSink::UDPSink(DeviceSinkAPI *deviceAPI) : ChannelSourceAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_squelch(1e-6), m_spectrum(0), m_spectrumEnabled(false), m_spectrumChunkSize(2160), m_spectrumChunkCounter(0), m_magsq(1e-10), m_movingAverage(16, 1e-10), m_inMovingAverage(480, 1e-10), m_sampleRateSum(0), m_sampleRateAvgCounter(0), m_levelCalcCount(0), m_peakLevel(0.0f), m_levelSum(0.0f), m_levelNbSamples(480), m_squelchOpen(false), m_squelchOpenCount(0), m_squelchCloseCount(0), m_squelchThreshold(4800), m_modPhasor(0.0f), m_SSBFilterBufferIndex(0), m_settingsMutex(QMutex::Recursive) { setObjectName(m_channelId); m_udpHandler.setFeedbackMessageQueue(&m_inputMessageQueue); m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / m_settings.m_inputSampleRate, m_ssbFftLen); m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size m_channelizer = new UpChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSource(m_channelizer, this); m_deviceAPI->addThreadedSource(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); applySettings(m_settings, true); } UDPSink::~UDPSink() { delete[] m_SSBFilterBuffer; delete m_SSBFilter; m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSource(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; } void UDPSink::start() { m_udpHandler.start(); } void UDPSink::stop() { m_udpHandler.stop(); } void UDPSink::pull(Sample& sample) { if (m_settings.m_channelMute) { sample.m_real = 0.0f; sample.m_imag = 0.0f; initSquelch(false); return; } Complex ci; m_settingsMutex.lock(); if (m_interpolatorDistance > 1.0f) // decimate { modulateSample(); while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } else { if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } m_interpolatorDistanceRemain += m_interpolatorDistance; ci *= m_carrierNco.nextIQ(); // shift to carrier frequency m_settingsMutex.unlock(); double magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); magsq /= (1<<30); m_movingAverage.feed(magsq); m_magsq = m_movingAverage.average(); sample.m_real = (FixReal) ci.real(); sample.m_imag = (FixReal) ci.imag(); } void UDPSink::modulateSample() { if (m_settings.m_sampleFormat == UDPSinkSettings::FormatS16LE) // Linear I/Q transponding { Sample s; m_udpHandler.readSample(s); uint64_t magsq = s.m_real * s.m_real + s.m_imag * s.m_imag; m_inMovingAverage.feed(magsq/1073741824.0); m_inMagsq = m_inMovingAverage.average(); calculateSquelch(m_inMagsq); if (m_squelchOpen) { m_modSample.real(s.m_real * m_settings.m_gainOut); m_modSample.imag(s.m_imag * m_settings.m_gainOut); calculateLevel(m_modSample); } else { m_modSample.real(0.0f); m_modSample.imag(0.0f); } } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatNFM) { FixReal t; readMonoSample(t); m_inMovingAverage.feed((t*t)/1073741824.0); m_inMagsq = m_inMovingAverage.average(); calculateSquelch(m_inMagsq); if (m_squelchOpen) { m_modPhasor += (m_settings.m_fmDeviation / m_settings.m_inputSampleRate) * (t / 32768.0f) * M_PI * 2.0f; m_modSample.real(cos(m_modPhasor) * 10362.2f * m_settings.m_gainOut); m_modSample.imag(sin(m_modPhasor) * 10362.2f * m_settings.m_gainOut); calculateLevel(m_modSample); } else { m_modSample.real(0.0f); m_modSample.imag(0.0f); } } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatAM) { FixReal t; readMonoSample(t); m_inMovingAverage.feed((t*t)/1073741824.0); m_inMagsq = m_inMovingAverage.average(); calculateSquelch(m_inMagsq); if (m_squelchOpen) { m_modSample.real(((t / 32768.0f)*m_settings.m_amModFactor*m_settings.m_gainOut + 1.0f) * 16384.0f); // modulate and scale zero frequency carrier m_modSample.imag(0.0f); calculateLevel(m_modSample); } else { m_modSample.real(0.0f); m_modSample.imag(0.0f); } } else if ((m_settings.m_sampleFormat == UDPSinkSettings::FormatLSB) || (m_settings.m_sampleFormat == UDPSinkSettings::FormatUSB)) { FixReal t; Complex c, ci; fftfilt::cmplx *filtered; int n_out = 0; readMonoSample(t); m_inMovingAverage.feed((t*t)/1073741824.0); m_inMagsq = m_inMovingAverage.average(); calculateSquelch(m_inMagsq); if (m_squelchOpen) { ci.real((t / 32768.0f) * m_settings.m_gainOut); ci.imag(0.0f); n_out = m_SSBFilter->runSSB(ci, &filtered, (m_settings.m_sampleFormat == UDPSinkSettings::FormatUSB)); if (n_out > 0) { memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex)); m_SSBFilterBufferIndex = 0; } c = m_SSBFilterBuffer[m_SSBFilterBufferIndex]; m_modSample.real(m_SSBFilterBuffer[m_SSBFilterBufferIndex].real() * 32768.0f); m_modSample.imag(m_SSBFilterBuffer[m_SSBFilterBufferIndex].imag() * 32768.0f); m_SSBFilterBufferIndex++; calculateLevel(m_modSample); } else { m_modSample.real(0.0f); m_modSample.imag(0.0f); } } else { m_modSample.real(0.0f); m_modSample.imag(0.0f); initSquelch(false); } if (m_spectrum && m_spectrumEnabled && (m_spectrumChunkCounter < m_spectrumChunkSize - 1)) { Sample s; s.m_real = (FixReal) m_modSample.real(); s.m_imag = (FixReal) m_modSample.imag(); m_sampleBuffer.push_back(s); m_spectrumChunkCounter++; } else if (m_spectrum) { m_spectrum->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), false); m_sampleBuffer.clear(); m_spectrumChunkCounter = 0; } } void UDPSink::calculateLevel(Real sample) { if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), sample); m_levelSum += sample * sample; m_levelCalcCount++; } else { qreal rmsLevel = m_levelSum > 0.0 ? sqrt(m_levelSum / m_levelNbSamples) : 0.0; //qDebug("NFMMod::calculateLevel: %f %f", rmsLevel, m_peakLevel); emit levelChanged(rmsLevel, m_peakLevel, m_levelNbSamples); m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void UDPSink::calculateLevel(Complex sample) { Real t = std::abs(sample); if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), t); m_levelSum += (t * t); m_levelCalcCount++; } else { qreal rmsLevel = m_levelSum > 0.0 ? sqrt((m_levelSum/(1<<30)) / m_levelNbSamples) : 0.0; emit levelChanged(rmsLevel, m_peakLevel / 32768.0, m_levelNbSamples); m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } bool UDPSink::handleMessage(const Message& cmd) { if (UpChannelizer::MsgChannelizerNotification::match(cmd)) { UpChannelizer::MsgChannelizerNotification& notif = (UpChannelizer::MsgChannelizerNotification&) cmd; UDPSinkSettings settings = m_settings; settings.m_basebandSampleRate = notif.getBasebandSampleRate(); settings.m_outputSampleRate = notif.getSampleRate(); settings.m_inputFrequencyOffset = notif.getFrequencyOffset(); applySettings(settings); qDebug() << "UDPSink::handleMessage: MsgChannelizerNotification:" << " m_basebandSampleRate: " << settings.m_basebandSampleRate << " m_outputSampleRate: " << settings.m_outputSampleRate << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset; return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; m_channelizer->configure(m_channelizer->getInputMessageQueue(), cfg.getSampleRate(), cfg.getCenterFrequency()); qDebug() << "UDPSink::handleMessage: MsgConfigureChannelizer:" << " sampleRate: " << cfg.getSampleRate() << " centerFrequency: " << cfg.getCenterFrequency(); return true; } else if (MsgConfigureUDPSink::match(cmd)) { MsgConfigureUDPSink& cfg = (MsgConfigureUDPSink&) cmd; UDPSinkSettings settings = cfg.getSettings(); // These settings are set with DownChannelizer::MsgChannelizerNotification m_absoluteFrequencyOffset = settings.m_inputFrequencyOffset; settings.m_basebandSampleRate = m_settings.m_basebandSampleRate; settings.m_outputSampleRate = m_settings.m_outputSampleRate; settings.m_inputFrequencyOffset = m_settings.m_inputFrequencyOffset; applySettings(settings, cfg.getForce()); qDebug() << "UDPSink::handleMessage: MsgConfigureUDPSink:" << " m_sampleFormat: " << settings.m_sampleFormat << " m_inputSampleRate: " << settings.m_inputSampleRate << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_fmDeviation: " << settings.m_fmDeviation << " m_udpAddressStr: " << settings.m_udpAddress << " m_udpPort: " << settings.m_udpPort << " m_channelMute: " << settings.m_channelMute << " m_gainIn: " << settings.m_gainIn << " m_gainOut: " << settings.m_gainOut << " m_squelchGate: " << settings.m_squelchGate << " m_squelch: " << settings.m_squelch << "dB" << " m_squelchEnabled: " << settings.m_squelchEnabled << " m_autoRWBalance: " << settings.m_autoRWBalance << " m_stereoInput: " << settings.m_stereoInput << " force: " << cfg.getForce(); return true; } else if (UDPSinkMessages::MsgSampleRateCorrection::match(cmd)) { UDPSinkMessages::MsgSampleRateCorrection& cfg = (UDPSinkMessages::MsgSampleRateCorrection&) cmd; Real newSampleRate = m_actualInputSampleRate + cfg.getCorrectionFactor() * m_actualInputSampleRate; // exclude values too way out nominal sample rate (20%) if ((newSampleRate < m_settings.m_inputSampleRate * 1.2) && (newSampleRate > m_settings.m_inputSampleRate * 0.8)) { m_actualInputSampleRate = newSampleRate; if ((cfg.getRawDeltaRatio() > -0.05) || (cfg.getRawDeltaRatio() < 0.05)) { if (m_sampleRateAvgCounter < m_sampleRateAverageItems) { m_sampleRateSum += m_actualInputSampleRate; m_sampleRateAvgCounter++; } } else { m_sampleRateSum = 0.0; m_sampleRateAvgCounter = 0; } if (m_sampleRateAvgCounter == m_sampleRateAverageItems) { float avgRate = m_sampleRateSum / m_sampleRateAverageItems; qDebug("UDPSink::handleMessage: MsgSampleRateCorrection: corr: %+.6f new rate: %.0f: avg rate: %.0f", cfg.getCorrectionFactor(), m_actualInputSampleRate, avgRate); m_actualInputSampleRate = avgRate; m_sampleRateSum = 0.0; m_sampleRateAvgCounter = 0; } // else // { // qDebug("UDPSink::handleMessage: MsgSampleRateCorrection: corr: %+.6f new rate: %.0f", // cfg.getCorrectionFactor(), // m_actualInputSampleRate); // } m_settingsMutex.lock(); m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_actualInputSampleRate / (Real) m_settings.m_outputSampleRate; //m_interpolator.create(48, m_actualInputSampleRate, m_settings.m_rfBandwidth / 2.2, 3.0); // causes clicking: leaving at standard frequency m_settingsMutex.unlock(); } return true; } else if (MsgUDPSinkSpectrum::match(cmd)) { MsgUDPSinkSpectrum& spc = (MsgUDPSinkSpectrum&) cmd; m_spectrumEnabled = spc.getEnabled(); qDebug() << "UDPSink::handleMessage: MsgUDPSinkSpectrum: m_spectrumEnabled: " << m_spectrumEnabled; return true; } else if (MsgResetReadIndex::match(cmd)) { m_settingsMutex.lock(); m_udpHandler.resetReadIndex(); m_settingsMutex.unlock(); qDebug() << "UDPSink::handleMessage: MsgResetReadIndex"; return true; } else { if(m_spectrum != 0) { return m_spectrum->handleMessage(cmd); } else { return false; } } } void UDPSink::setSpectrum(bool enabled) { Message* cmd = MsgUDPSinkSpectrum::create(enabled); getInputMessageQueue()->push(cmd); } void UDPSink::resetReadIndex() { Message* cmd = MsgResetReadIndex::create(); getInputMessageQueue()->push(cmd); } void UDPSink::applySettings(const UDPSinkSettings& settings, bool force) { if ((settings.m_inputFrequencyOffset != m_settings.m_inputFrequencyOffset) || (settings.m_outputSampleRate != m_settings.m_outputSampleRate) || force) { m_settingsMutex.lock(); m_carrierNco.setFreq(settings.m_inputFrequencyOffset, settings.m_outputSampleRate); m_settingsMutex.unlock(); } if((settings.m_outputSampleRate != m_settings.m_outputSampleRate) || (settings.m_rfBandwidth != m_settings.m_rfBandwidth) || (settings.m_inputSampleRate != m_settings.m_inputSampleRate) || force) { m_settingsMutex.lock(); m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) settings.m_outputSampleRate; m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0); m_actualInputSampleRate = settings.m_inputSampleRate; m_udpHandler.resetReadIndex(); m_sampleRateSum = 0.0; m_sampleRateAvgCounter = 0; m_spectrumChunkSize = settings.m_inputSampleRate * 0.05; // 50 ms chunk m_spectrumChunkCounter = 0; m_levelNbSamples = settings.m_inputSampleRate * 0.01; // every 10 ms m_levelCalcCount = 0; m_peakLevel = 0.0f; m_levelSum = 0.0f; m_udpHandler.resizeBuffer(settings.m_inputSampleRate); m_inMovingAverage.resize(settings.m_inputSampleRate * 0.01, 1e-10); // 10 ms m_squelchThreshold = settings.m_inputSampleRate * settings.m_squelchGate; initSquelch(m_squelchOpen); m_SSBFilter->create_filter(settings.m_lowCutoff / settings.m_inputSampleRate, settings.m_rfBandwidth / settings.m_inputSampleRate); m_settingsMutex.unlock(); } if ((settings.m_squelch != m_settings.m_squelch) || force) { m_squelch = CalcDb::powerFromdB(settings.m_squelch); } if ((settings.m_squelchGate != m_settings.m_squelchGate) || force) { m_squelchThreshold = settings.m_outputSampleRate * settings.m_squelchGate; initSquelch(m_squelchOpen); } if ((settings.m_udpAddress != m_settings.m_udpAddress) || (settings.m_udpPort != m_settings.m_udpPort) || force) { m_settingsMutex.lock(); m_udpHandler.configureUDPLink(settings.m_udpAddress, settings.m_udpPort); m_settingsMutex.unlock(); } if ((settings.m_channelMute != m_settings.m_channelMute) || force) { if (!settings.m_channelMute) { m_udpHandler.resetReadIndex(); } } if ((settings.m_autoRWBalance != m_settings.m_autoRWBalance) || force) { m_settingsMutex.lock(); m_udpHandler.setAutoRWBalance(settings.m_autoRWBalance); if (!settings.m_autoRWBalance) { m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) settings.m_outputSampleRate; m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0); m_actualInputSampleRate = settings.m_inputSampleRate; m_udpHandler.resetReadIndex(); } m_settingsMutex.unlock(); } m_settings = settings; } QByteArray UDPSink::serialize() const { return m_settings.serialize(); } bool UDPSink::deserialize(const QByteArray& data) { if (m_settings.deserialize(data)) { MsgConfigureUDPSink *msg = MsgConfigureUDPSink::create(m_settings, true); m_inputMessageQueue.push(msg); return true; } else { m_settings.resetToDefaults(); MsgConfigureUDPSink *msg = MsgConfigureUDPSink::create(m_settings, true); m_inputMessageQueue.push(msg); return false; } }