/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // Copyright (C) 2020 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "dsp/basebandsamplesink.h" #include "packetmodsource.h" #include "util/crc.h" PacketModSource::PacketModSource() : m_channelSampleRate(48000), m_preemphasisFilter(48000, FMPREEMPHASIS_TAU_US), m_channelFrequencyOffset(0), m_magsq(0.0), m_audioPhase(0.0f), m_fmPhase(0.0f), m_levelCalcCount(0), m_peakLevel(0.0f), m_levelSum(0.0f), m_bitCount(0), m_byteIdx(0), m_bitIdx(0), m_last5Bits(0), m_state(idle) { m_lowpass.create(301, m_channelSampleRate, 22000.0 / 2.0); applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } PacketModSource::~PacketModSource() { } void PacketModSource::pull(SampleVector::iterator begin, unsigned int nbSamples) { std::for_each( begin, begin + nbSamples, [this](Sample& s) { pullOne(s); } ); } void PacketModSource::pullOne(Sample& sample) { if (m_settings.m_channelMute) { sample.m_real = 0.0f; sample.m_imag = 0.0f; return; } // Calculate next sample modulateSample(); // Shift to carrier frequency Complex ci = m_modSample; ci *= m_carrierNco.nextIQ(); // Calculate power double magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); // Convert from float to fixed point sample.m_real = (FixReal) (ci.real() * SDR_TX_SCALEF); sample.m_imag = (FixReal) (ci.imag() * SDR_TX_SCALEF); } void PacketModSource::prefetch(unsigned int nbSamples) { } void PacketModSource::sampleToSpectrum(Real sample) { if (m_spectrumSink) { Complex out; Complex in; in.real(sample); in.imag(0.0f); if (m_interpolator.decimate(&m_interpolatorDistanceRemain, in, &out)) { sample = std::real(out); m_sampleBuffer.push_back(Sample(sample * 0.891235351562f * SDR_TX_SCALEF, 0.0f)); m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), true); m_sampleBuffer.clear(); m_interpolatorDistanceRemain += m_interpolatorDistance; } } } void PacketModSource::modulateSample() { Real audioMod; Real theta; Real f_delta; Real linearGain; Real linearRampGain; Real emphasis; if ((m_state == idle) || (m_state == wait)) { audioMod = 0.0f; m_modSample.real(audioMod); m_modSample.imag(0); calculateLevel(audioMod); sampleToSpectrum(audioMod); if (m_state == wait) { m_waitCounter--; if (m_waitCounter == 0) initTX(); } } else { // Bell 202 AFSK if (m_sampleIdx == 0) { if (bitsValid()) { // NRZI encoding - encode 0 as change of freq, 1 no change if (getBit() == 0) m_f = m_f == m_settings.m_markFrequency ? m_settings.m_spaceFrequency : m_settings.m_markFrequency; } // Should we start ramping down power? if ((m_bitCount < m_settings.m_rampDownBits) || ((m_bitCount == 0) && !m_settings.m_rampDownBits)) { m_state = ramp_down; if (m_settings.m_rampDownBits > 0) m_powRamp = -m_settings.m_rampRange/(m_settings.m_rampDownBits * (Real)m_samplesPerSymbol); } } m_sampleIdx++; if (m_sampleIdx > m_samplesPerSymbol) m_sampleIdx = 0; if (!m_settings.m_bbNoise) audioMod = sin(m_audioPhase); else audioMod = (Real)rand()/((Real)RAND_MAX)-0.5; // Noise to test filter frequency response if ((m_state == tx) || m_settings.m_modulateWhileRamping) m_audioPhase += (M_PI * 2.0f * m_f) / (m_channelSampleRate); if (m_audioPhase > M_PI) m_audioPhase -= (2.0f * M_PI); // Preemphasis filter if (m_settings.m_preEmphasis) audioMod = m_preemphasisFilter.filter(audioMod); if (m_audioFile.is_open()) m_audioFile << audioMod << "\n"; // Display baseband audio in spectrum analyser sampleToSpectrum(audioMod); // FM m_fmPhase += audioMod; if (m_fmPhase > M_PI) m_fmPhase -= (2.0f * M_PI); f_delta = m_settings.m_fmDeviation / m_channelSampleRate; theta = 2.0f * M_PI * f_delta * m_fmPhase; linearRampGain = powf(10.0f, m_pow/20.0f); linearGain = powf(10.0f, m_settings.m_gain/20.0f); if (!m_settings.m_rfNoise) { m_modSample.real(linearGain * linearRampGain * cos(theta)); m_modSample.imag(linearGain * linearRampGain * sin(theta)); } else { // Noise to test filter frequency response m_modSample.real(linearGain * ((Real)rand()/((Real)RAND_MAX)-0.5f)); m_modSample.imag(linearGain * ((Real)rand()/((Real)RAND_MAX)-0.5f)); } // Apply low pass filter to limit RF BW m_modSample = m_lowpass.filter(m_modSample); // Ramp up/down power at start/end of packet if ((m_state == ramp_up) || (m_state == ramp_down)) { m_pow += m_powRamp; if ((m_state == ramp_up) && (m_pow >= 0.0f)) { // Finished ramp up, transmit at full gain m_state = tx; m_pow = 0.0f; } else if ((m_state == ramp_down) && ( (m_settings.m_rampRange == 0) || (m_settings.m_rampDownBits == 0) || (m_pow <= -(Real)m_settings.m_rampRange) )) { m_state = idle; // Do we need to retransmit the packet? if (m_settings.m_repeat) { if (m_packetRepeatCount > 0) m_packetRepeatCount--; if ((m_packetRepeatCount == PacketModSettings::infinitePackets) || (m_packetRepeatCount > 0)) { if (m_settings.m_repeatDelay > 0.0f) { // Wait before retransmitting m_state = wait; m_waitCounter = m_settings.m_repeatDelay * m_channelSampleRate; } else { // Retransmit immediately initTX(); } } } } } Real s = std::real(m_modSample); calculateLevel(s); } } void PacketModSource::calculateLevel(Real& sample) { if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), sample); m_levelSum += sample * sample; m_levelCalcCount++; } else { m_rmsLevel = sqrt(m_levelSum / m_levelNbSamples); m_peakLevelOut = m_peakLevel; m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void PacketModSource::applySettings(const PacketModSettings& settings, bool force) { if ((settings.m_lpfTaps != m_settings.m_lpfTaps) || (settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { qDebug() << "PacketModSource::applySettings: Creating new lpf with taps " << settings.m_lpfTaps << " rfBW " << settings.m_rfBandwidth; m_lowpass.create(settings.m_lpfTaps, m_channelSampleRate, settings.m_rfBandwidth / 2.0); } if ((settings.m_preEmphasisTau != m_settings.m_preEmphasisTau) || (settings.m_preEmphasisHighFreq != m_settings.m_preEmphasisHighFreq) || force) { qDebug() << "PacketModSource::applySettings: Creating new preemphasis filter with tau " << settings.m_preEmphasisTau << " highFreq " << settings.m_preEmphasisHighFreq << " sampleRate " << m_channelSampleRate; m_preemphasisFilter.configure(m_channelSampleRate, settings.m_preEmphasisTau, settings.m_preEmphasisHighFreq); } m_settings = settings; } void PacketModSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "PacketModSource::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset << " rfBandwidth: " << m_settings.m_rfBandwidth << " spectrumRate: " << m_settings.m_spectrumRate; if ((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate); } if ((m_channelSampleRate != channelSampleRate) || force) { m_preemphasisFilter.configure(channelSampleRate, m_settings.m_preEmphasisTau); m_lowpass.create(m_settings.m_lpfTaps, channelSampleRate, m_settings.m_rfBandwidth / 2.0); m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) channelSampleRate / (Real) m_settings.m_spectrumRate; m_interpolator.create(48, m_settings.m_spectrumRate, m_settings.m_spectrumRate / 2.2, 3.0); } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } static uint8_t *ax25_address(uint8_t *p, QString address, uint8_t crrl) { int len; int i; QByteArray b; int ssid; len = address.length(); b = address.toUtf8(); ssid = 0; for (i = 0; i < 6; i++) { if ((i < len) && (ssid == 0)) { if (b[i] == '-') { if (len > i + 1) { ssid = b[i+1] - '0'; if ((len > i + 2) && isdigit(b[i+2])) { ssid = (ssid*10) + (b[i+1] - '0'); } if (ssid >= 16) qDebug() << "ax25_address: SSID greater than 15 not supported"; } else qDebug() << "ax25_address: SSID number missing"; *p++ = ' ' << 1; } else { *p++ = b[i] << 1; } } else { *p++ = ' ' << 1; } } *p++ = crrl | (ssid << 1); return p; } bool PacketModSource::bitsValid() { return m_bitCount > 0; } int PacketModSource::getBit() { int bit; if (m_bitCount > 0) { bit = (m_bits[m_byteIdx] >> m_bitIdx) & 1; m_bitIdx++; m_bitCount--; if (m_bitIdx == 8) { m_byteIdx++; m_bitIdx = 0; } } else bit = 0; return bit; } void PacketModSource::addBit(int bit) { // Transmit LSB first m_bits[m_byteIdx] |= bit << m_bitIdx; m_bitIdx++; m_bitCount++; m_bitCountTotal++; if (m_bitIdx == 8) { m_byteIdx++; m_bits[m_byteIdx] = 0; m_bitIdx = 0; } m_last5Bits = ((m_last5Bits << 1) | bit) & 0x1f; } void PacketModSource::initTX() { m_byteIdx = 0; m_bitIdx = 0; m_bitCount = m_bitCountTotal; // Reset to allow retransmission m_f = m_settings.m_spaceFrequency; if (m_settings.m_rampUpBits == 0) { m_state = tx; m_pow = 0.0f; } else { m_state = ramp_up; m_pow = -(Real)m_settings.m_rampRange; m_powRamp = m_settings.m_rampRange/(m_settings.m_rampUpBits * (Real)m_samplesPerSymbol); } } void PacketModSource::addTXPacket(QString callsign, QString to, QString via, QString data) { uint8_t packet[AX25_MAX_BYTES]; uint8_t *crc_start; uint8_t *p; crc16x25 crc; uint16_t crcValue; int len; int packet_length; // Create AX.25 packet p = packet; // Flag for (int i = 0; i < std::min(m_settings.m_ax25PreFlags, AX25_MAX_FLAGS); i++) *p++ = AX25_FLAG; crc_start = p; // Dest p = ax25_address(p, to, 0xe0); // From p = ax25_address(p, callsign, 0x60); // Via p = ax25_address(p, via, 0x61); // Control *p++ = m_settings.m_ax25Control; // PID *p++ = m_settings.m_ax25PID; // Data len = data.length(); memcpy(p, data.toUtf8(), len); p += len; // CRC (do not include flags) crc.calculate(crc_start, p-crc_start); crcValue = crc.get(); *p++ = crcValue & 0xff; *p++ = (crcValue >> 8); // Flag for (int i = 0; i < std::min(m_settings.m_ax25PostFlags, AX25_MAX_FLAGS); i++) *p++ = AX25_FLAG; packet_length = p-&packet[0]; // HDLC bit stuffing m_byteIdx = 0; m_bitIdx = 0; m_last5Bits = 0; m_bitCount = 0; m_bitCountTotal = 0; for (int i = 0; i < packet_length; i++) { for (int j = 0; j < 8; j++) { int tx_bit = (packet[i] >> j) & 1; // Stuff 0 if last 5 bits are 1s if ((packet[i] != AX25_FLAG) && (m_last5Bits == 0x1f)) addBit(0); addBit(tx_bit); } } m_samplesPerSymbol = m_channelSampleRate / m_settings.m_baud; m_packetRepeatCount = m_settings.m_repeatCount; initTX(); // Only reset phases at start of new packet TX, not in initTX(), so that // there isn't a discontinuity in phase when repeatedly transmitting a // single tone m_sampleIdx = 0; m_audioPhase = 0.0f; m_fmPhase = 0.0f; if (m_settings.m_writeToFile) m_audioFile.open("packetmod.csv", std::ofstream::out); }