/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016 F4EXB // // written by Edouard Griffiths // // // // Integer half-band FIR based interpolator and decimator // // This is the even/odd double buffer variant. Really useful only when SIMD is // // used // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef SDRBASE_DSP_INTHALFBANDFILTEREO_H_ #define SDRBASE_DSP_INTHALFBANDFILTEREO_H_ #ifdef USE_SIMD #include #endif #include #include "dsp/dsptypes.h" #include "dsp/hbfiltertraits.h" #include "util/export.h" template class SDRANGEL_API IntHalfbandFilterEO1 { public: IntHalfbandFilterEO1(); // downsample by 2, return center part of original spectrum bool workDecimateCenter(Sample* sample) { // insert sample into ring-buffer storeSample((FixReal) sample->real(), (FixReal) sample->imag()); switch(m_state) { case 0: // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; default: // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // upsample by 2, return center part of original spectrum - double buffer variant bool workInterpolateCenter(Sample* sampleIn, Sample *SampleOut) { switch(m_state) { case 0: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(SampleOut); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we didn't consume the sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(SampleOut); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we consumed the sample return true; } } bool workDecimateCenter(qint32 *x, qint32 *y) { // insert sample into ring-buffer storeSample(*x, *y); switch(m_state) { case 0: // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; default: // save result doFIR(x, y); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // downsample by 2, return lower half of original spectrum bool workDecimateLowerHalf(Sample* sample) { switch(m_state) { case 0: // insert sample into ring-buffer storeSample((FixReal) -sample->imag(), (FixReal) sample->real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) -sample->real(), (FixReal) -sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we have a new sample return true; case 2: // insert sample into ring-buffer storeSample((FixReal) sample->imag(), (FixReal) -sample->real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we don't have a new sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sample->real(), (FixReal) sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // upsample by 2, from lower half of original spectrum - double buffer variant bool workInterpolateLowerHalf(Sample* sampleIn, Sample *sampleOut) { Sample s; switch(m_state) { case 0: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(s.imag()); sampleOut->setImag(-s.real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we didn't consume the sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(-s.real()); sampleOut->setImag(-s.imag()); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we consumed the sample return true; case 2: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(-s.imag()); sampleOut->setImag(s.real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we didn't consume the sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(s.real()); sampleOut->setImag(s.imag()); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we consumed the sample return true; } } // downsample by 2, return upper half of original spectrum bool workDecimateUpperHalf(Sample* sample) { switch(m_state) { case 0: // insert sample into ring-buffer storeSample((FixReal) sample->imag(), (FixReal) -sample->real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) -sample->real(), (FixReal) -sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we have a new sample return true; case 2: // insert sample into ring-buffer storeSample((FixReal) -sample->imag(), (FixReal) sample->real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we don't have a new sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sample->real(), (FixReal) sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // upsample by 2, move original spectrum to upper half - double buffer variant bool workInterpolateUpperHalf(Sample* sampleIn, Sample *sampleOut) { Sample s; switch(m_state) { case 0: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(-s.imag()); sampleOut->setImag(s.real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we didn't consume the sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(-s.real()); sampleOut->setImag(-s.imag()); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we consumed the sample return true; case 2: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(s.imag()); sampleOut->setImag(-s.real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we didn't consume the sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(s.real()); sampleOut->setImag(s.imag()); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we consumed the sample return true; } } void myDecimate(const Sample* sample1, Sample* sample2) { storeSample((FixReal) sample1->real(), (FixReal) sample1->imag()); advancePointer(); storeSample((FixReal) sample2->real(), (FixReal) sample2->imag()); doFIR(sample2); advancePointer(); } void myDecimate(qint32 x1, qint32 y1, qint32 *x2, qint32 *y2) { storeSample(x1, y1); advancePointer(); storeSample(*x2, *y2); doFIR(x2, y2); advancePointer(); } protected: qint32 m_even[2][HBFIRFilterTraits::hbOrder]; // double buffer technique qint32 m_odd[2][HBFIRFilterTraits::hbOrder]; // double buffer technique int m_ptr; int m_size; int m_state; void storeSample(const FixReal& sampleI, const FixReal& sampleQ) { if ((m_ptr % 2) == 0) { m_even[0][m_ptr/2] = sampleI; m_even[1][m_ptr/2] = sampleQ; m_even[0][m_ptr/2 + m_size] = sampleI; m_even[1][m_ptr/2 + m_size] = sampleQ; } else { m_odd[0][m_ptr/2] = sampleI; m_odd[1][m_ptr/2] = sampleQ; m_odd[0][m_ptr/2 + m_size] = sampleI; m_odd[1][m_ptr/2 + m_size] = sampleQ; } } void storeSample(qint32 x, qint32 y) { if ((m_ptr % 2) == 0) { m_even[0][m_ptr/2] = x; m_even[1][m_ptr/2] = y; m_even[0][m_ptr/2 + m_size] = x; m_even[1][m_ptr/2 + m_size] = y; } else { m_odd[0][m_ptr/2] = x; m_odd[1][m_ptr/2] = y; m_odd[0][m_ptr/2 + m_size] = x; m_odd[1][m_ptr/2 + m_size] = y; } } void advancePointer() { m_ptr = (m_ptr + 1) % (2*m_size); } void doFIR(Sample* sample) { int a = m_ptr/2 + m_size; // tip pointer int b = m_ptr/2 + 1; // tail pointer qint32 iAcc = 0; qint32 qAcc = 0; #ifdef USE_SIMD //#warning "IntHalfbandFiler SIMD" const __m128i* h = (const __m128i*) HBFIRFilterTraits::hbCoeffs; __m128i sumI = _mm_setzero_si128(); __m128i sumQ = _mm_setzero_si128(); __m128i sa, sb; a -= 3; for (int i = 0; i < HBFIRFilterTraits::hbOrder / 16; i++) { if ((m_ptr % 2) == 0) { sa = _mm_shuffle_epi32(_mm_loadu_si128((__m128i*) &(m_even[0][a])), _MM_SHUFFLE(0,1,2,3)); sb = _mm_loadu_si128((__m128i*) &(m_even[0][b])); sumI = _mm_add_epi32(sumI, _mm_mullo_epi32(_mm_add_epi32(sa, sb), *h)); sa = _mm_shuffle_epi32(_mm_loadu_si128((__m128i*) &(m_even[1][a])), _MM_SHUFFLE(0,1,2,3)); sb = _mm_loadu_si128((__m128i*) &(m_even[1][b])); sumQ = _mm_add_epi32(sumQ, _mm_mullo_epi32(_mm_add_epi32(sa, sb), *h)); } else { sa = _mm_shuffle_epi32(_mm_loadu_si128((__m128i*) &(m_odd[0][a])), _MM_SHUFFLE(0,1,2,3)); sb = _mm_loadu_si128((__m128i*) &(m_odd[0][b])); sumI = _mm_add_epi32(sumI, _mm_mullo_epi32(_mm_add_epi32(sa, sb), *h)); sa = _mm_shuffle_epi32(_mm_loadu_si128((__m128i*) &(m_odd[1][a])), _MM_SHUFFLE(0,1,2,3)); sb = _mm_loadu_si128((__m128i*) &(m_odd[1][b])); sumQ = _mm_add_epi32(sumQ, _mm_mullo_epi32(_mm_add_epi32(sa, sb), *h)); } a -= 4; b += 4; ++h; } // horizontal add of four 32 bit partial sums sumI = _mm_add_epi32(sumI, _mm_srli_si128(sumI, 8)); sumI = _mm_add_epi32(sumI, _mm_srli_si128(sumI, 4)); iAcc = _mm_cvtsi128_si32(sumI); sumQ = _mm_add_epi32(sumQ, _mm_srli_si128(sumQ, 8)); sumQ = _mm_add_epi32(sumQ, _mm_srli_si128(sumQ, 4)); qAcc = _mm_cvtsi128_si32(sumQ); #else for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { if ((m_ptr % 2) == 0) { iAcc += (m_even[0][a] + m_even[0][b]) * HBFIRFilterTraits::hbCoeffs[i]; qAcc += (m_even[1][a] + m_even[1][b]) * HBFIRFilterTraits::hbCoeffs[i]; } else { iAcc += (m_odd[0][a] + m_odd[0][b]) * HBFIRFilterTraits::hbCoeffs[i]; qAcc += (m_odd[1][a] + m_odd[1][b]) * HBFIRFilterTraits::hbCoeffs[i]; } a -= 1; b += 1; } #endif if ((m_ptr % 2) == 0) { iAcc += ((qint32)m_odd[0][m_ptr/2 + m_size/2]) << (HBFIRFilterTraits::hbShift - 1); qAcc += ((qint32)m_odd[1][m_ptr/2 + m_size/2]) << (HBFIRFilterTraits::hbShift - 1); } else { iAcc += ((qint32)m_even[0][m_ptr/2 + m_size/2 + 1]) << (HBFIRFilterTraits::hbShift - 1); qAcc += ((qint32)m_even[1][m_ptr/2 + m_size/2 + 1]) << (HBFIRFilterTraits::hbShift - 1); } sample->setReal(iAcc >> HBFIRFilterTraits::hbShift -1); sample->setImag(qAcc >> HBFIRFilterTraits::hbShift -1); } void doFIR(qint32 *x, qint32 *y) { int a = m_ptr/2 + m_size; // tip pointer int b = m_ptr/2 + 1; // tail pointer qint32 iAcc = 0; qint32 qAcc = 0; #ifdef USE_SIMD const __m128i* h = (const __m128i*) HBFIRFilterTraits::hbCoeffs; __m128i sumI = _mm_setzero_si128(); __m128i sumQ = _mm_setzero_si128(); __m128i sa, sb; a -= 3; for (int i = 0; i < HBFIRFilterTraits::hbOrder / 16; i++) { if ((m_ptr % 2) == 0) { sa = _mm_shuffle_epi32(_mm_loadu_si128((__m128i*) &(m_even[0][a])), _MM_SHUFFLE(0,1,2,3)); sb = _mm_loadu_si128((__m128i*) &(m_even[0][b])); sumI = _mm_add_epi32(sumI, _mm_mullo_epi32(_mm_add_epi32(sa, sb), *h)); sa = _mm_shuffle_epi32(_mm_loadu_si128((__m128i*) &(m_even[1][a])), _MM_SHUFFLE(0,1,2,3)); sb = _mm_loadu_si128((__m128i*) &(m_even[1][b])); sumQ = _mm_add_epi32(sumQ, _mm_mullo_epi32(_mm_add_epi32(sa, sb), *h)); } else { sa = _mm_shuffle_epi32(_mm_loadu_si128((__m128i*) &(m_odd[0][a])), _MM_SHUFFLE(0,1,2,3)); sb = _mm_loadu_si128((__m128i*) &(m_odd[0][b])); sumI = _mm_add_epi32(sumI, _mm_mullo_epi32(_mm_add_epi32(sa, sb), *h)); sa = _mm_shuffle_epi32(_mm_loadu_si128((__m128i*) &(m_odd[1][a])), _MM_SHUFFLE(0,1,2,3)); sb = _mm_loadu_si128((__m128i*) &(m_odd[1][b])); sumQ = _mm_add_epi32(sumQ, _mm_mullo_epi32(_mm_add_epi32(sa, sb), *h)); } a -= 4; b += 4; ++h; } // horizontal add of four 32 bit partial sums sumI = _mm_add_epi32(sumI, _mm_srli_si128(sumI, 8)); sumI = _mm_add_epi32(sumI, _mm_srli_si128(sumI, 4)); iAcc = _mm_cvtsi128_si32(sumI); sumQ = _mm_add_epi32(sumQ, _mm_srli_si128(sumQ, 8)); sumQ = _mm_add_epi32(sumQ, _mm_srli_si128(sumQ, 4)); qAcc = _mm_cvtsi128_si32(sumQ); #else for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { if ((m_ptr % 2) == 0) { iAcc += (m_even[0][a] + m_even[0][b]) * HBFIRFilterTraits::hbCoeffs[i]; qAcc += (m_even[1][a] + m_even[1][b]) * HBFIRFilterTraits::hbCoeffs[i]; } else { iAcc += (m_odd[0][a] + m_odd[0][b]) * HBFIRFilterTraits::hbCoeffs[i]; qAcc += (m_odd[1][a] + m_odd[1][b]) * HBFIRFilterTraits::hbCoeffs[i]; } a -= 1; b += 1; } #endif if ((m_ptr % 2) == 0) { iAcc += ((qint32)m_odd[0][m_ptr/2 + m_size/2]) << (HBFIRFilterTraits::hbShift - 1); qAcc += ((qint32)m_odd[1][m_ptr/2 + m_size/2]) << (HBFIRFilterTraits::hbShift - 1); } else { iAcc += ((qint32)m_even[0][m_ptr/2 + m_size/2 + 1]) << (HBFIRFilterTraits::hbShift - 1); qAcc += ((qint32)m_even[1][m_ptr/2 + m_size/2 + 1]) << (HBFIRFilterTraits::hbShift - 1); } *x = iAcc >> (HBFIRFilterTraits::hbShift -1); // HB_SHIFT incorrect do not loose the gained bit *y = qAcc >> (HBFIRFilterTraits::hbShift -1); } }; template IntHalfbandFilterEO1::IntHalfbandFilterEO1() { m_size = HBFIRFilterTraits::hbOrder/2; for (int i = 0; i < 2*m_size; i++) { m_even[0][i] = 0; m_even[1][i] = 0; m_odd[0][i] = 0; m_odd[1][i] = 0; } m_ptr = 0; m_state = 0; } #endif /* SDRBASE_DSP_INTHALFBANDFILTEREO_H_ */