#ifndef INCLUDE_INTHALFBANDFILTER_H #define INCLUDE_INTHALFBANDFILTER_H #include #include "dsp/dsptypes.h" #include "util/export.h" // uses Q1.14 format internally, input and output are S16 /* * supported filter orders: 64, 48, 32 */ #define HB_FILTERORDER 32 #define HB_SHIFT 14 class SDRANGELOVE_API IntHalfbandFilter { public: IntHalfbandFilter(); // downsample by 2, return center part of original spectrum bool workDecimateCenter(Sample* sample) { // insert sample into ring-buffer m_samples[m_ptr][0] = sample->real(); m_samples[m_ptr][1] = sample->imag(); switch(m_state) { case 0: // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 1; // tell caller we don't have a new sample return false; default: // save result doFIR(sample); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 0; // tell caller we have a new sample return true; } } // downsample by 2, return edges of spectrum rotated into center bool workDecimateFullRotate(Sample* sample) { switch(m_state) { case 0: // insert sample into ring-buffer m_samples[m_ptr][0] = sample->real(); m_samples[m_ptr][1] = sample->imag(); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 1; // tell caller we don't have a new sample return false; default: // insert sample into ring-buffer m_samples[m_ptr][0] = -sample->real(); m_samples[m_ptr][1] = sample->imag(); // save result doFIR(sample); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 0; // tell caller we have a new sample return true; } } // downsample by 2, return lower half of original spectrum bool workDecimateLowerHalf(Sample* sample) { switch(m_state) { case 0: // insert sample into ring-buffer m_samples[m_ptr][0] = -sample->imag(); m_samples[m_ptr][1] = sample->real(); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 1; // tell caller we don't have a new sample return false; case 1: // insert sample into ring-buffer m_samples[m_ptr][0] = -sample->real(); m_samples[m_ptr][1] = -sample->imag(); // save result doFIR(sample); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 2; // tell caller we have a new sample return true; case 2: // insert sample into ring-buffer m_samples[m_ptr][0] = sample->imag(); m_samples[m_ptr][1] = -sample->real(); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 3; // tell caller we don't have a new sample return false; default: // insert sample into ring-buffer m_samples[m_ptr][0] = sample->real(); m_samples[m_ptr][1] = sample->imag(); // save result doFIR(sample); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 0; // tell caller we have a new sample return true; } } // downsample by 2, return upper half of original spectrum bool workDecimateUpperHalf(Sample* sample) { switch(m_state) { case 0: // insert sample into ring-buffer m_samples[m_ptr][0] = sample->imag(); m_samples[m_ptr][1] = -sample->real(); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 1; // tell caller we don't have a new sample return false; case 1: // insert sample into ring-buffer m_samples[m_ptr][0] = -sample->real(); m_samples[m_ptr][1] = -sample->imag(); // save result doFIR(sample); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 2; // tell caller we have a new sample return true; case 2: // insert sample into ring-buffer m_samples[m_ptr][0] = -sample->imag(); m_samples[m_ptr][1] = sample->real(); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 3; // tell caller we don't have a new sample return false; default: // insert sample into ring-buffer m_samples[m_ptr][0] = sample->real(); m_samples[m_ptr][1] = sample->imag(); // save result doFIR(sample); // advance write-pointer m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1); // next state m_state = 0; // tell caller we have a new sample return true; } } void myDecimate(Sample* sample1, Sample* sample2) { static const qint16 mod33[38] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2} ; m_samples[m_ptr][0] = sample1->real(); m_samples[m_ptr][1] = sample1->imag(); m_ptr = mod33[m_ptr + 2 - 1]; m_samples[m_ptr][0] = sample2->real(); m_samples[m_ptr][1] = sample2->imag(); doFIR(sample2); m_ptr = mod33[m_ptr + 2 - 1]; } protected: qint16 m_samples[HB_FILTERORDER + 1][2]; qint16 m_ptr; int m_state; void doFIR(Sample* sample) { // coefficents #if HB_FILTERORDER == 64 static const qint32 COEFF[16] = { -0.001114417441601693505720538368564120901 * (1 << HB_SHIFT), 0.001268007827185253051302527005361753254 * (1 << HB_SHIFT), -0.001959831378850490895410230152151598304 * (1 << HB_SHIFT), 0.002878308307661380308073439948657323839 * (1 << HB_SHIFT), -0.004071361818258721100571850826099762344 * (1 << HB_SHIFT), 0.005597288494657440618973431867289036745 * (1 << HB_SHIFT), -0.007532345003308904551886371336877346039 * (1 << HB_SHIFT), 0.009980346844667375288961963519795972388 * (1 << HB_SHIFT), -0.013092614174300500062830820979797863401 * (1 << HB_SHIFT), 0.01710934914871829748417297878404497169 * (1 << HB_SHIFT), -0.022443558692997273018576720460259821266 * (1 << HB_SHIFT), 0.029875811511593811098386197500076377764 * (1 << HB_SHIFT), -0.041086352085710403647667021687084343284 * (1 << HB_SHIFT), 0.060465467462665789533104998554335907102 * (1 << HB_SHIFT), -0.104159517495977321788203084906854201108 * (1 << HB_SHIFT), 0.317657589850154464805598308885237202048 * (1 << HB_SHIFT), }; #elif HB_FILTERORDER == 48 static const qint32 COEFF[12] = { -0.004102576237611492253332112767338912818 * (1 << HB_SHIFT), 0.003950551047979387886410762575906119309 * (1 << HB_SHIFT), -0.005807875789391703583164350277456833282 * (1 << HB_SHIFT), 0.00823497890520805998770814682075069868 * (1 << HB_SHIFT), -0.011372226513199541059195851744334504474 * (1 << HB_SHIFT), 0.015471557140973646315984524335362948477 * (1 << HB_SHIFT), -0.020944996398689276484450516591095947661 * (1 << HB_SHIFT), 0.028568078132034283034279553703527199104 * (1 << HB_SHIFT), -0.040015143905614086738964374490024056286 * (1 << HB_SHIFT), 0.059669519431831075095828964549582451582 * (1 << HB_SHIFT), -0.103669138691865420076609893840213771909 * (1 << HB_SHIFT), 0.317491986549921390015072120149852707982 * (1 << HB_SHIFT) }; #elif HB_FILTERORDER == 32 static const qint16 mod33[38] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2} ; static const qint32 COEFF[8] = { (qint32)(-0.015956912844043127236437484839370881673 * (1 << HB_SHIFT)), (qint32)( 0.013023031678944928940522274274371739011 * (1 << HB_SHIFT)), (qint32)(-0.01866942273717486777684371190844103694 * (1 << HB_SHIFT)), (qint32)( 0.026550887571157304190005987720724078827 * (1 << HB_SHIFT)), (qint32)(-0.038350314277854319344740474662103224546 * (1 << HB_SHIFT)), (qint32)( 0.058429248652825838128421764849917963147 * (1 << HB_SHIFT)), (qint32)(-0.102889802028955756885153505209018476307 * (1 << HB_SHIFT)), (qint32)( 0.317237706405931241260276465254719369113 * (1 << HB_SHIFT)) }; #else #error unsupported filter order #endif // init read-pointer int a = mod33[m_ptr + 2 + 1]; // 0 + 1 int b = mod33[m_ptr + 2 - 2]; //-1 - 1 // go through samples in buffer qint32 iAcc = 0; qint32 qAcc = 0; for(int i = 0; i < HB_FILTERORDER / 4; i++) { // do multiply-accumulate qint32 iTmp = m_samples[a][0] + m_samples[b][0]; qint32 qTmp = m_samples[a][1] + m_samples[b][1]; iAcc += iTmp * COEFF[i]; qAcc += qTmp * COEFF[i]; // update read-pointer a = mod33[a + 2 + 2]; b = mod33[b + 2 - 2]; } a = mod33[a + 2 - 1]; iAcc += ((qint32)m_samples[a][0] + 1) << (HB_SHIFT - 1); qAcc += ((qint32)m_samples[a][1] + 1) << (HB_SHIFT - 1); sample->setReal(iAcc >> HB_SHIFT); sample->setImag(qAcc >> HB_SHIFT); } }; #endif // INCLUDE_INTHALFBANDFILTER_H