/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "device/deviceapi.h" #include "util/simpleserializer.h" #include "dsp/dspcommands.h" #include "dsp/dspengine.h" #include "hackrfinput.h" #include "hackrfgui.h" #include "hackrfthread.h" MESSAGE_CLASS_DEFINITION(HackRFInput::MsgConfigureHackRF, Message) MESSAGE_CLASS_DEFINITION(HackRFInput::MsgReportHackRF, Message) HackRFInput::HackRFInput(DeviceAPI *deviceAPI) : m_deviceAPI(deviceAPI), m_settings(), m_dev(0), m_hackRFThread(0), m_deviceDescription("HackRF") { } HackRFInput::~HackRFInput() { stop(); } bool HackRFInput::init(const Message& cmd) { return false; } bool HackRFInput::start(int device) { QMutexLocker mutexLocker(&m_mutex); hackrf_error rc; rc = (hackrf_error) hackrf_init(); if (rc != HACKRF_SUCCESS) { qCritical("HackRFInput::start: failed to initiate HackRF library %s", hackrf_error_name(rc)); } if (m_dev != 0) { stop(); } if (!m_sampleFifo.setSize(1<<19)) { qCritical("HackRFInput::start: could not allocate SampleFifo"); return false; } if ((m_dev = open_hackrf_from_sequence(device)) == 0) { qCritical("HackRFInput::start: could not open HackRF #%d", device); return false; } if((m_hackRFThread = new HackRFThread(m_dev, &m_sampleFifo)) == 0) { qFatal("HackRFInput::start: out of memory"); stop(); return false; } mutexLocker.unlock(); applySettings(m_settings, true); m_hackRFThread->startWork(); qDebug("HackRFInput::startInput: started"); return true; } void HackRFInput::stop() { qDebug("HackRFInput::stop"); QMutexLocker mutexLocker(&m_mutex); if(m_hackRFThread != 0) { m_hackRFThread->stopWork(); delete m_hackRFThread; m_hackRFThread = 0; } if(m_dev != 0) { hackrf_stop_rx(m_dev); hackrf_close(m_dev); m_dev = 0; } hackrf_exit(); } const QString& HackRFInput::getDeviceDescription() const { return m_deviceDescription; } int HackRFInput::getSampleRate() const { int rate = HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex] * 1000; return (rate / (1<(freq_hz)); if (rc != HACKRF_SUCCESS) { qWarning("HackRFInput::setCenterFrequency: could not frequency to %llu Hz", freq_hz); } else { qWarning("HackRFInput::setCenterFrequency: frequency set to %llu Hz", freq_hz); } } bool HackRFInput::applySettings(const HackRFSettings& settings, bool force) { QMutexLocker mutexLocker(&m_mutex); bool forwardChange = false; hackrf_error rc; qDebug() << "HackRFInput::applySettings"; if (m_settings.m_dcBlock != settings.m_dcBlock) { m_settings.m_dcBlock = settings.m_dcBlock; m_deviceAPI->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection); } if (m_settings.m_iqCorrection != settings.m_iqCorrection) { m_settings.m_iqCorrection = settings.m_iqCorrection; m_deviceAPI->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection); } if ((m_settings.m_devSampleRateIndex != settings.m_devSampleRateIndex) || force) { forwardChange = true; if (settings.m_devSampleRateIndex < HackRFSampleRates::m_nb_rates) { m_settings.m_devSampleRateIndex = settings.m_devSampleRateIndex; } else { m_settings.m_devSampleRateIndex = HackRFSampleRates::m_nb_rates - 1; } if (m_dev != 0) { rc = (hackrf_error) hackrf_set_sample_rate_manual(m_dev, HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex]*1000, 1); if (rc != HACKRF_SUCCESS) { qCritical("HackRFInput::applySettings: could not set sample rate index %u (%d kS/s): %s", m_settings.m_devSampleRateIndex, HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex], hackrf_error_name(rc)); } else { qDebug("HackRFInput::applySettings: sample rate set to index: %u (%d kS/s)", m_settings.m_devSampleRateIndex, HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex]); m_hackRFThread->setSamplerate(HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex]); } } } if ((m_settings.m_log2Decim != settings.m_log2Decim) || force) { m_settings.m_log2Decim = settings.m_log2Decim; forwardChange = true; if(m_dev != 0) { m_hackRFThread->setLog2Decimation(m_settings.m_log2Decim); qDebug() << "HackRFInput: set decimation to " << (1<setFcPos((int) m_settings.m_fcPos); qDebug() << "HackRFInput: set fc pos (enum) to " << (int) m_settings.m_fcPos; } } if ((m_settings.m_lnaGain != settings.m_lnaGain) || force) { m_settings.m_lnaGain = settings.m_lnaGain; if (m_dev != 0) { rc = (hackrf_error) hackrf_set_lna_gain(m_dev, m_settings.m_lnaGain); if(rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: airspy_set_lna_gain failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: LNA gain set to " << m_settings.m_lnaGain; } } } if ((m_settings.m_vgaGain != settings.m_vgaGain) || force) { m_settings.m_vgaGain = settings.m_vgaGain; if (m_dev != 0) { rc = (hackrf_error) hackrf_set_vga_gain(m_dev, m_settings.m_vgaGain); if (rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_vga_gain failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: VGA gain set to " << m_settings.m_vgaGain; } } } if ((m_settings.m_bandwidthIndex != settings.m_bandwidthIndex) || force) { if (settings.m_bandwidthIndex < HackRFBandwidths::m_nb_bw) { m_settings.m_bandwidthIndex = settings.m_bandwidthIndex; } else { m_settings.m_bandwidthIndex = HackRFBandwidths::m_nb_bw - 1; } if (m_dev != 0) { uint32_t bw_index = hackrf_compute_baseband_filter_bw_round_down_lt(HackRFBandwidths::m_bw_k[m_settings.m_bandwidthIndex]*1000); rc = (hackrf_error) hackrf_set_baseband_filter_bandwidth(m_dev, bw_index); if (rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_baseband_filter_bandwidth failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: Baseband BW filter set to " << HackRFBandwidths::m_bw_k[m_settings.m_bandwidthIndex] << " kHz"; } } } if ((m_settings.m_biasT != settings.m_biasT) || force) { m_settings.m_biasT = settings.m_biasT; if (m_dev != 0) { rc = (hackrf_error) hackrf_set_antenna_enable(m_dev, (m_settings.m_biasT ? 1 : 0)); if(rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_antenna_enable failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: bias tee set to " << m_settings.m_biasT; } } } if ((m_settings.m_lnaExt != settings.m_lnaExt) || force) { m_settings.m_lnaExt = settings.m_lnaExt; if (m_dev != 0) { rc = (hackrf_error) hackrf_set_amp_enable(m_dev, (m_settings.m_lnaExt ? 1 : 0)); if(rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_amp_enable failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: extra LNA set to " << m_settings.m_lnaExt; } } } if (forwardChange) { int sampleRate = devSampleRate/(1<getDeviceInputMessageQueue()->push(notif); } return true; } hackrf_device *HackRFInput::open_hackrf_from_sequence(int sequence) { hackrf_device_list_t *hackrf_devices = hackrf_device_list(); hackrf_device *hackrf_ptr; hackrf_error rc; rc = (hackrf_error) hackrf_device_list_open(hackrf_devices, sequence, &hackrf_ptr); if (rc == HACKRF_SUCCESS) { return hackrf_ptr; } else { return 0; } }