#!/usr/bin/env python3 """ Connects to spectrum server to monitor PSD and detect local increase to pilot channel(s) """ import requests, traceback, sys, json, time import struct, operator import math import numpy as np import websocket try: import thread except ImportError: import _thread as thread import time from datetime import datetime from optparse import OptionParser import sdrangel OPTIONS = None API_URI = None WS_URI = None PASS_INDEX = 0 PSD_FLOOR = [] CONFIG = {} UNSERVED_FREQUENCIES = [] # ====================================================================== class SuperScannerError(Exception): def __init__(self, message): self.message = message # ====================================================================== class SuperScannerWebsocketError(SuperScannerError): pass # ====================================================================== class SuperScannerWebsocketClosed(SuperScannerError): pass # ====================================================================== class SuperScannerOptionsError(SuperScannerError): pass # ====================================================================== class SuperScannerAPIError(SuperScannerError): pass # ====================================================================== def log_with_timestamp(message): t = datetime.utcnow() print(f'{t.isoformat()} {message}') # ====================================================================== def get_input_options(args=None): if args is None: args = sys.argv[1:] parser = OptionParser(usage="usage: %%prog [-t]\n") parser.add_option("-a", "--address", dest="address", help="SDRangel web base address. Default: 127.0.0.1", metavar="ADDRESS", type="string") parser.add_option("-p", "--api-port", dest="api_port", help="SDRangel API port. Default: 8091", metavar="PORT", type="int") parser.add_option("-w", "--ws-port", dest="ws_port", help="SDRangel websocket spectrum server port. Default: 8887", metavar="PORT", type="int") parser.add_option("-c", "--config-file", dest="config_file", help="JSON configuration file. Mandatory", metavar="FILE", type="string") parser.add_option("-j", "--psd-in", dest="psd_input_file", help="JSON file containing PSD floor information.", metavar="FILE", type="string") parser.add_option("-J", "--psd-out", dest="psd_output_file", help="Write PSD floor information to JSON file.", metavar="FILE", type="string") parser.add_option("-n", "--nb-passes", dest="passes", help="Number of passes for PSD floor estimation. Default: 10", metavar="NUM", type="int") parser.add_option("-m", "--margin", dest="margin", help="Margin in dB above PSD floor to detect acivity. Default: 3", metavar="DB", type="int") parser.add_option("-f", "--psd-level", dest="psd_fixed", help="Use a fixed PSD floor value.", metavar="DB", type="float") parser.add_option("-X", "--psd-exclude-higher", dest="psd_exclude_higher", help="Level above which to exclude bin scan.", metavar="DB", type="float") parser.add_option("-x", "--psd-exclude-lower", dest="psd_exclude_lower", help="Level below which to exclude bin scan.", metavar="DB", type="float") parser.add_option("-N", "--hotspots-noise", dest="hotspots_noise", help="Number of hotspots above which detection is considered as noise. Default 8", metavar="NUM", type="int") parser.add_option("-G", "--psd-graph", dest="psd_graph", help="Show PSD floor graphs. Requires matplotlib", action="store_true") parser.add_option("-g", "--group-tolerance", dest="group_tolerance", help="Radius (1D) tolerance in points (bins) for hotspots grouping. Default 1.", metavar="NUM", type="int") parser.add_option("-r", "--freq-round", dest="freq_round", help="Frequency rounding value in Hz. Default: 1 (no rounding)", metavar="NUM", type="int") parser.add_option("-o", "--freq-offset", dest="freq_offset", help="Frequency rounding offset in Hz. Default: 0 (no offset)", metavar="NUM", type="int") (options, args) = parser.parse_args(args) if (options.config_file == None): raise SuperScannerOptionsError('A configuration file is required. Option -c or --config-file') if (options.address == None): options.address = "127.0.0.1" if (options.api_port == None): options.api_port = 8091 if (options.ws_port == None): options.ws_port = 8887 if (options.passes == None): options.passes = 10 elif options.passes < 1: options.passes = 1 if (options.margin == None): options.margin = 3 if (options.hotspots_noise == None): options.hotspots_noise = 8 if (options.group_tolerance == None): options.group_tolerance = 1 if (options.freq_round == None): options.freq_round = 1 if (options.freq_offset == None): options.freq_offset = 0 return options # ====================================================================== def on_ws_message(ws, message): global PASS_INDEX try: struct_message = decode_message(message) if OPTIONS.psd_fixed is not None and OPTIONS.passes > 0: compute_fixed_floor(struct_message) OPTIONS.passes = 0 # done elif OPTIONS.psd_input_file is not None and OPTIONS.passes > 0: global PSD_FLOOR with open(OPTIONS.psd_input_file) as json_file: PSD_FLOOR = json.load(json_file) OPTIONS.passes = 0 # done elif OPTIONS.passes > 0: compute_floor(struct_message) OPTIONS.passes -= 1 PASS_INDEX += 1 print(f'PSD floor pass no {PASS_INDEX}') elif OPTIONS.passes == 0: OPTIONS.passes -= 1 if OPTIONS.psd_output_file: with open(OPTIONS.psd_output_file, 'w') as outfile: json.dump(PSD_FLOOR, outfile) if OPTIONS.psd_graph: show_floor() else: scan(struct_message) except Exception as ex: tb = traceback.format_exc() print(tb, file=sys.stderr) # ====================================================================== def on_ws_error(ws, error): raise SuperScannerWebsocketError(f'{error}') # ====================================================================== def on_ws_close(ws): raise SuperScannerWebsocketClosed('websocket closed') # ====================================================================== def on_ws_open(ws): log_with_timestamp('Web socket opened starting...') def run(*args): pass thread.start_new_thread(run, ()) # ====================================================================== def decode_message(byte_message): struct_message = {} struct_message['cf'] = int.from_bytes(byte_message[0:8], byteorder='little', signed=False) struct_message['elasped'] = int.from_bytes(byte_message[8:16], byteorder='little', signed=False) struct_message['ts'] = int.from_bytes(byte_message[16:24], byteorder='little', signed=False) struct_message['fft_size'] = int.from_bytes(byte_message[24:28], byteorder='little', signed=False) struct_message['fft_bw'] = int.from_bytes(byte_message[28:32], byteorder='little', signed=False) indicators = int.from_bytes(byte_message[32:36], byteorder='little', signed=False) struct_message['linear'] = (indicators & 1) == 1 struct_message['ssb'] = ((indicators & 2) >> 1) == 1 struct_message['usb'] = ((indicators & 4) >> 2) == 1 struct_message['samples'] = [] for sample_index in range(struct_message['fft_size']): psd = struct.unpack('f', byte_message[36 + 4*sample_index: 40 + 4*sample_index])[0] struct_message['samples'].append(psd) return struct_message # ====================================================================== def compute_fixed_floor(struct_message): global PSD_FLOOR nb_samples = len(struct_message['samples']) PSD_FLOOR = [(OPTIONS.psd_fixed, False)] * nb_samples # ====================================================================== def compute_floor(struct_message): global PSD_FLOOR fft_size = struct_message['fft_size'] psd_samples = struct_message['samples'] for psd_index, psd in enumerate(psd_samples): exclude = False if OPTIONS.psd_exclude_higher: exclude = psd > OPTIONS.psd_exclude_higher if OPTIONS.psd_exclude_lower: exclude = psd < OPTIONS.psd_exclude_lower if psd_index < len(PSD_FLOOR): PSD_FLOOR[psd_index][1] = exclude or PSD_FLOOR[psd_index][1] if psd > PSD_FLOOR[psd_index][0]: PSD_FLOOR[psd_index][0] = psd else: PSD_FLOOR.append([]) PSD_FLOOR[psd_index].append(psd) PSD_FLOOR[psd_index].append(exclude) # ====================================================================== def show_floor(): import matplotlib import matplotlib.pyplot as plt print('show_floor') plt.figure(1) plt.subplot(211) plt.plot([x[1] for x in PSD_FLOOR]) plt.ylabel('PSD exclusion') plt.subplot(212) plt.plot([x[0] for x in PSD_FLOOR]) plt.ylabel('PSD floor') plt.show() # ====================================================================== def freq_rounding(freq, round_freq, round_offset): shifted_freq = freq - round_offset return round(shifted_freq/round_freq)*round_freq + round_offset # ====================================================================== def scan(struct_message): ts = struct_message['ts'] freq_density = struct_message['fft_bw'] / struct_message['fft_size'] hotspots = [] hotspot ={} last_hotspot_index = 0 if struct_message['ssb']: freq_start = struct_message['cf'] freq_stop = struct_message['cf'] + struct_message['fft_bw'] else: freq_start = struct_message['cf'] - (struct_message['fft_bw'] / 2) freq_stop = struct_message['cf'] + (struct_message['fft_bw'] / 2) psd_samples = struct_message['samples'] psd_sum = 0 psd_count = 1 for psd_index, psd in enumerate(psd_samples): freq = freq_start + psd_index*freq_density if PSD_FLOOR[psd_index][1]: # exclusion zone continue if psd > PSD_FLOOR[psd_index][0] + OPTIONS.margin: # detection psd_sum += 10**(psd/10) psd_count += 1 if psd_index > last_hotspot_index + OPTIONS.group_tolerance: # new hotspot if hotspot.get("begin"): # finalize previous hotspot hotspot["end"] = hotspot_end hotspot["power"] = psd_sum / psd_count hotspots.append(hotspot) hotspot = {"begin": freq} psd_sum = 10**(psd/10) psd_count = 1 hotspot_end = freq last_hotspot_index = psd_index if hotspot.get("begin"): # finalize last hotspot hotspot["end"] = hotspot_end hotspot["power"] = psd_sum / psd_count hotspots.append(hotspot) process_hotspots(hotspots) # ====================================================================== def allocate_channel(): channels = CONFIG['channel_info'] for channel in channels: if channel['usage'] == 0: return channel return None # ====================================================================== def freq_in_ranges_check(freq): freqrange_inclusions = CONFIG.get('freqrange_inclusions', []) freqrange_exclusions = CONFIG.get('freqrange_exclusions', []) for freqrange in freqrange_exclusions: if freqrange[0] <= freq <= freqrange[1]: return False for freqrange in freqrange_inclusions: if freqrange[0] <= freq <= freqrange[1]: return True return False # ====================================================================== def get_hotspot_frequency(channel, hotspot): fc_pos = channel.get('fc_pos', 'center') if fc_pos == 'lsb': channel_frequency = freq_rounding(hotspot['end'], OPTIONS.freq_round, OPTIONS.freq_offset) elif fc_pos == 'usb': channel_frequency = freq_rounding(hotspot['begin'], OPTIONS.freq_round, OPTIONS.freq_offset) else: channel_frequency = freq_rounding(hotspot['fc'], OPTIONS.freq_round, OPTIONS.freq_offset) fc_shift = channel.get('fc_shift', 0) return channel_frequency + fc_shift # ====================================================================== def process_hotspots(scanned_hotspots): global CONFIG global UNSERVED_FREQUENCIES if len(scanned_hotspots) > OPTIONS.hotspots_noise: return # calculate frequency for each hotspot and create list of valid hotspots hotspots = [] for hotspot in scanned_hotspots: width = hotspot['end'] - hotspot['begin'] fc = hotspot['begin'] + width/2 if not freq_in_ranges_check(fc): continue hotspot['fc'] = fc hotspot['begin'] = fc - (width/2) # re-center around fc hotspot['end'] = fc + (width/2) hotspots.append(hotspot) # calculate hotspot distances for each used channel and reuse the channel for the closest hotspot channels = CONFIG['channel_info'] used_channels = [channel for channel in channels if channel['usage'] == 1] consolidated_distances = [] for channel in used_channels: # loop on used channels distances = [[abs(channel['frequency'] - get_hotspot_frequency(channel, hotspot)), hotspot] for hotspot in hotspots] distances = sorted(distances, key=operator.itemgetter(0)) if distances: consolidated_distances.append([distances[0][0], channel, distances[0][1]]) # [distance, channel, hotspot] consolidated_distances = sorted(consolidated_distances, key=operator.itemgetter(0)) # get (channel, hotspot) pair with shortest distance first # reallocate used channels on their closest hotspot for distance in consolidated_distances: channel = distance[1] hotspot = distance[2] if hotspot in hotspots: # hotspot is not processed yet channel_frequency = get_hotspot_frequency(channel, hotspot) channel['usage'] = 2 # mark channel used on this pass if channel['frequency'] != channel_frequency: # optimization: do not move to same frequency channel['frequency'] = channel_frequency channel_index = channel['index'] set_channel_frequency(channel) log_with_timestamp(f'Moved channel {channel_index} to frequency {channel_frequency} Hz') hotspots.remove(hotspot) # done with this hotspot # for remaining hotspots we need to allocate new channels for hotspot in hotspots: channel = allocate_channel() if channel: channel_index = channel['index'] channel_frequency = get_hotspot_frequency(channel, hotspot) channel['usage'] = 2 # mark channel used on this pass channel['frequency'] = channel_frequency set_channel_frequency(channel) log_with_timestamp(f'Allocated channel {channel_index} on frequency {channel_frequency} Hz') else: fc = hotspot['fc'] if fc not in UNSERVED_FREQUENCIES: UNSERVED_FREQUENCIES.append(fc) log_with_timestamp(f'All channels allocated. Cannot process signal at {fc} Hz') # cleanup for channel in CONFIG['channel_info']: if channel['usage'] == 1: # channel unused on this pass channel['usage'] = 0 # release it channel_index = channel['index'] fc = channel['frequency'] set_channel_mute(channel) UNSERVED_FREQUENCIES.clear() # at least one channel is able to serve next time log_with_timestamp(f'Released channel {channel_index} on frequency {fc} Hz') elif channel['usage'] == 2: # channel used on this pass channel['usage'] = 1 # reset usage for next pass # ====================================================================== def set_channel_frequency(channel): deviceset_index = CONFIG['deviceset_index'] channel_index = channel['index'] channel_id = channel['id'] df = channel['frequency'] - CONFIG['device_frequency'] url = f'{API_URI}/sdrangel/deviceset/{deviceset_index}/channel/{channel_index}/settings' payload = { sdrangel.CHANNEL_TYPES[channel_id]['settings']: { sdrangel.CHANNEL_TYPES[channel_id]['df_key']: df, sdrangel.CHANNEL_TYPES[channel_id]['mute_key']: 0 }, 'channelType': channel_id, 'direction': 0 } r = requests.patch(url=url, json=payload) if r.status_code // 100 != 2: raise SuperScannerAPIError(f'Set channel {channel_index} frequency failed') # ====================================================================== def set_channel_mute(channel): deviceset_index = CONFIG['deviceset_index'] channel_index = channel['index'] channel_id = channel['id'] url = f'{API_URI}/sdrangel/deviceset/{deviceset_index}/channel/{channel_index}/settings' payload = { sdrangel.CHANNEL_TYPES[channel_id]['settings']: { sdrangel.CHANNEL_TYPES[channel_id]['mute_key']: 1 }, 'channelType': channel_id, 'direction': 0 } r = requests.patch(url=url, json=payload) if r.status_code // 100 != 2: raise SuperScannerAPIError(f'Set channel {channel_index} mute failed') # ====================================================================== def get_deviceset_info(deviceset_index): url = f'{API_URI}/sdrangel/deviceset/{deviceset_index}' r = requests.get(url=url) if r.status_code // 100 != 2: raise SuperScannerAPIError(f'Get deviceset {deviceset_index} info failed') return r.json() # ====================================================================== def make_config(): global CONFIG deviceset_index = CONFIG['deviceset_index'] deviceset_info = get_deviceset_info(deviceset_index) device_frequency = deviceset_info["samplingDevice"]["centerFrequency"] CONFIG['device_frequency'] = device_frequency for channel_info in CONFIG['channel_info']: channel_index = channel_info['index'] if channel_index < deviceset_info['channelcount']: channel_offset = deviceset_info['channels'][channel_index]['deltaFrequency'] channel_id = deviceset_info['channels'][channel_index]['id'] channel_info['id'] = channel_id channel_info['usage'] = 0 # 0: unused 1: used 2: reused in current allocation step (temporary state) channel_info['frequency'] = device_frequency + channel_offset else: raise SuperScannerAPIError(f'There is no channel with index {channel_index} in deviceset {deviceset_index}') # ====================================================================== def main(): try: global OPTIONS global CONFIG global API_URI global WS_URI OPTIONS = get_input_options() log_with_timestamp(f'Start with options: {OPTIONS}') with open(OPTIONS.config_file) as json_file: # get base config CONFIG = json.load(json_file) log_with_timestamp(f'Initial configuration: {CONFIG}') API_URI = f'http://{OPTIONS.address}:{OPTIONS.api_port}' WS_URI = f'ws://{OPTIONS.address}:{OPTIONS.ws_port}' make_config() # complete config with device set information from SDRangel ws = websocket.WebSocketApp(WS_URI, on_message = on_ws_message, on_error = on_ws_error, on_close = on_ws_close) ws.on_open = on_ws_open ws.run_forever() except SuperScannerWebsocketError as ex: print(ex.message) except SuperScannerWebsocketClosed: print("Spectrum websocket closed") except Exception as ex: tb = traceback.format_exc() print(tb, file=sys.stderr) # ====================================================================== if __name__ == "__main__": main()