/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_CHANALYZERNG_H #define INCLUDE_CHANALYZERNG_H #include #include #include "dsp/basebandsamplesink.h" #include "channel/channelsinkapi.h" #include "dsp/interpolator.h" #include "dsp/ncof.h" #include "dsp/fftfilt.h" #include "dsp/phaselockcomplex.h" #include "audio/audiofifo.h" #include "util/message.h" #define ssbFftLen 1024 class DeviceSourceAPI; class ThreadedBasebandSampleSink; class DownChannelizer; class ChannelAnalyzerNG : public BasebandSampleSink, public ChannelSinkAPI { public: class MsgConfigureChannelAnalyzer : public Message { MESSAGE_CLASS_DECLARATION public: int getChannelSampleRate() const { return m_channelSampleRate; } Real getBandwidth() const { return m_Bandwidth; } Real getLoCutoff() const { return m_LowCutoff; } int getSpanLog2() const { return m_spanLog2; } bool getSSB() const { return m_ssb; } bool getPLL() const { return m_pll; } unsigned int getPLLPSKOrder() const { return m_pllPskOrder; } static MsgConfigureChannelAnalyzer* create( int channelSampleRate, Real Bandwidth, Real LowCutoff, int spanLog2, bool ssb, bool pll, unsigned int pllPskOrder) { return new MsgConfigureChannelAnalyzer( channelSampleRate, Bandwidth, LowCutoff, spanLog2, ssb, pll, pllPskOrder); } private: int m_channelSampleRate; Real m_Bandwidth; Real m_LowCutoff; int m_spanLog2; bool m_ssb; bool m_pll; unsigned int m_pllPskOrder; MsgConfigureChannelAnalyzer( int channelSampleRate, Real Bandwidth, Real LowCutoff, int spanLog2, bool ssb, bool pll, unsigned int pllPskOrder) : Message(), m_channelSampleRate(channelSampleRate), m_Bandwidth(Bandwidth), m_LowCutoff(LowCutoff), m_spanLog2(spanLog2), m_ssb(ssb), m_pll(pll), m_pllPskOrder(pllPskOrder) { } }; class MsgConfigureChannelizer : public Message { MESSAGE_CLASS_DECLARATION public: int getSampleRate() const { return m_sampleRate; } int getCenterFrequency() const { return m_centerFrequency; } static MsgConfigureChannelizer* create(int sampleRate, int centerFrequency) { return new MsgConfigureChannelizer(sampleRate, centerFrequency); } private: int m_sampleRate; int m_centerFrequency; MsgConfigureChannelizer(int sampleRate, int centerFrequency) : Message(), m_sampleRate(sampleRate), m_centerFrequency(centerFrequency) { } }; class MsgReportChannelSampleRateChanged : public Message { MESSAGE_CLASS_DECLARATION public: static MsgReportChannelSampleRateChanged* create() { return new MsgReportChannelSampleRateChanged(); } private: MsgReportChannelSampleRateChanged() : Message() { } }; ChannelAnalyzerNG(DeviceSourceAPI *deviceAPI); virtual ~ChannelAnalyzerNG(); virtual void destroy() { delete this; } void setSampleSink(BasebandSampleSink* sampleSink) { m_sampleSink = sampleSink; } void configure(MessageQueue* messageQueue, int channelSampleRate, Real Bandwidth, Real LowCutoff, int spanLog2, bool ssb, bool pll, unsigned int pllPskOrder); DownChannelizer *getChannelizer() { return m_channelizer; } int getInputSampleRate() const { return m_running.m_inputSampleRate; } int getChannelSampleRate() const { return m_running.m_channelSampleRate; } double getMagSq() const { return m_magsq; } bool isPllLocked() const { return m_running.m_pll && m_pll.locked(); } Real getPllDeltaPhase() const { return m_pll.getDeltaPhi(); } Real getPllPhase() const { return m_pll.getPhiHat(); } virtual void feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly); virtual void start(); virtual void stop(); virtual bool handleMessage(const Message& cmd); virtual void getIdentifier(QString& id) { id = objectName(); } virtual void getTitle(QString& title) { title = objectName(); } virtual qint64 getCenterFrequency() const { return m_running.m_frequency; } virtual QByteArray serialize() const { return QByteArray(); } virtual bool deserialize(const QByteArray& data __attribute__((unused))) { return false; } static const QString m_channelIdURI; static const QString m_channelId; private: struct Config { int m_frequency; int m_inputSampleRate; int m_channelSampleRate; Real m_Bandwidth; Real m_LowCutoff; int m_spanLog2; bool m_ssb; bool m_pll; unsigned int m_pllPskOrder; Config() : m_frequency(0), m_inputSampleRate(96000), m_channelSampleRate(96000), m_Bandwidth(5000), m_LowCutoff(300), m_spanLog2(3), m_ssb(false), m_pll(false), m_pllPskOrder(1) {} }; Config m_config; Config m_running; DeviceSourceAPI *m_deviceAPI; ThreadedBasebandSampleSink* m_threadedChannelizer; DownChannelizer* m_channelizer; int m_undersampleCount; fftfilt::cmplx m_sum; bool m_usb; double m_magsq; bool m_useInterpolator; NCOF m_nco; PhaseLockComplex m_pll; Interpolator m_interpolator; Real m_interpolatorDistance; Real m_interpolatorDistanceRemain; fftfilt* SSBFilter; fftfilt* DSBFilter; BasebandSampleSink* m_sampleSink; SampleVector m_sampleBuffer; QMutex m_settingsMutex; void apply(bool force = false); void processOneSample(Complex& c, fftfilt::cmplx *sideband) { int n_out; int decim = 1<runSSB(c, &sideband, m_usb); } else { n_out = DSBFilter->runDSB(c, &sideband); } for (int i = 0; i < n_out; i++) { // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display // smart decimation with bit gain using float arithmetic (23 bits significand) m_sum += sideband[i]; if (!(m_undersampleCount++ & (decim - 1))) // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1) { m_sum /= decim; Real re = m_sum.real() / SDR_RX_SCALED; Real im = m_sum.imag() / SDR_RX_SCALED; m_magsq = re*re + im*im; if (m_running.m_pll) { m_pll.feed(re, im); // Use -fPLL to mix (exchange PLL real and image in the complex multiplication) Real mixI = m_sum.real() * m_pll.getImag() - m_sum.imag() * m_pll.getReal(); Real mixQ = m_sum.real() * m_pll.getReal() + m_sum.imag() * m_pll.getImag(); // Real mixI = m_pll.getReal() * SDR_RX_SCALED; // Real mixQ = m_pll.getImag() * SDR_RX_SCALED; if (m_running.m_ssb & !m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(mixQ, mixI)); } else { m_sampleBuffer.push_back(Sample(mixI, mixQ)); } } else { if (m_running.m_ssb & !m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(m_sum.imag(), m_sum.real())); } else { m_sampleBuffer.push_back(Sample(m_sum.real(), m_sum.imag())); } } m_sum = 0; } } } }; #endif // INCLUDE_CHANALYZERNG_H