/* fir.c This file is part of a program that implements a Software-Defined Radio. Copyright (C) 2013, 2016, 2022 Warren Pratt, NR0V Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. The author can be reached by email at warren@pratt.one */ #define _CRT_SECURE_NO_WARNINGS #include #include #include "fftw3.h" #include "comm.hpp" #include "fir.hpp" namespace WDSP { void FIR::fftcv_mults (std::vector& mults, int NM, const float* c_impulse) { mults.resize(NM * 2); std::vector cfft_impulse(NM * 2); fftwf_plan ptmp = fftwf_plan_dft_1d( NM, (fftwf_complex *) cfft_impulse.data(), (fftwf_complex *) mults.data(), FFTW_FORWARD, FFTW_PATIENT ); std::fill(cfft_impulse.begin(), cfft_impulse.end(), 0); // store complex coefs right-justified in the buffer std::copy(c_impulse, c_impulse + (NM / 2 + 1) * 2, &(cfft_impulse[NM - 2])); fftwf_execute (ptmp); fftwf_destroy_plan (ptmp); } void FIR::get_fsamp_window(std::vector& window, int N, int wintype) { double arg0; double arg1; window.resize(N); switch (wintype) { case 0: arg0 = 2.0 * PI / ((double)N - 1.0); for (int i = 0; i < N; i++) { arg1 = cos(arg0 * (double)i); double val = +0.21747 + arg1 * (-0.45325 + arg1 * (+0.28256 + arg1 * (-0.04672))); window[i] = (float) val; } break; case 1: arg0 = 2.0 * PI / ((double)N - 1.0); for (int i = 0; i < N; ++i) { arg1 = cos(arg0 * (double)i); double val = +6.3964424114390378e-02 + arg1 * (-2.3993864599352804e-01 + arg1 * (+3.5015956323820469e-01 + arg1 * (-2.4774111897080783e-01 + arg1 * (+8.5438256055858031e-02 + arg1 * (-1.2320203369293225e-02 + arg1 * (+4.3778825791773474e-04)))))); window[i] = (float) val; } break; default: for (int i = 0; i < N; i++) window[i] = 1.0; } } void FIR::fir_fsamp_odd (std::vector& c_impulse, int N, const float* A, int rtype, double scale, int wintype) { int mid = (N - 1) / 2; double mag; double phs; std::vector fcoef(N * 2); fftwf_plan ptmp = fftwf_plan_dft_1d( N, (fftwf_complex *)fcoef.data(), (fftwf_complex *)c_impulse.data(), FFTW_BACKWARD, FFTW_PATIENT ); double local_scale = 1.0 / (double) N; for (int i = 0; i <= mid; i++) { mag = A[i] * local_scale; phs = - (double)mid * TWOPI * (double)i / (double)N; fcoef[2 * i + 0] = (float) (mag * cos (phs)); fcoef[2 * i + 1] = (float) (mag * sin (phs)); } for (int i = mid + 1, j = 0; i < N; i++, j++) { fcoef[2 * i + 0] = + fcoef[2 * (mid - j) + 0]; fcoef[2 * i + 1] = - fcoef[2 * (mid - j) + 1]; } fftwf_execute (ptmp); fftwf_destroy_plan (ptmp); std::vector window; get_fsamp_window(window, N, wintype); switch (rtype) { case 0: for (int i = 0; i < N; i++) c_impulse[i] = (float) (scale * c_impulse[2 * i] * window[i]); break; case 1: for (int i = 0; i < N; i++) { c_impulse[2 * i + 0] *= (float) (scale * window[i]); c_impulse[2 * i + 1] = 0.0; } break; default: break; } } void FIR::fir_fsamp (std::vector& c_impulse, int N, const float* A, int rtype, double scale, int wintype) { double sum; if (N & 1) { int M = (N - 1) / 2; for (int n = 0; n < M + 1; n++) { sum = 0.0; for (int k = 1; k < M + 1; k++) sum += 2.0 * A[k] * cos(TWOPI * (n - M) * k / N); c_impulse[2 * n + 0] = (float) ((1.0 / N) * (A[0] + sum)); c_impulse[2 * n + 1] = 0.0; } for (int n = M + 1, j = 1; n < N; n++, j++) { c_impulse[2 * n + 0] = c_impulse[2 * (M - j) + 0]; c_impulse[2 * n + 1] = 0.0; } } else { double M = (double)(N - 1) / 2.0; for (int n = 0; n < N / 2; n++) { sum = 0.0; for (int k = 1; k < N / 2; k++) sum += 2.0 * A[k] * cos(TWOPI * (n - M) * k / N); c_impulse[2 * n + 0] = (float) ((1.0 / N) * (A[0] + sum)); c_impulse[2 * n + 1] = 0.0; } for (int n = N / 2, j = 1; n < N; n++, j++) { c_impulse[2 * n + 0] = c_impulse[2 * (N / 2 - j) + 0]; c_impulse[2 * n + 1] = 0.0; } } std::vector window; get_fsamp_window (window, N, wintype); switch (rtype) { case 0: for (int i = 0; i < N; i++) c_impulse[i] = (float) (scale * c_impulse[2 * i] * window[i]); break; case 1: for (int i = 0; i < N; i++) { c_impulse[2 * i + 0] *= (float) (scale * window[i]); c_impulse[2 * i + 1] = 0.0; } break; default: break; } } void FIR::fir_bandpass (std::vector& c_impulse, int N, double f_low, double f_high, double samplerate, int wintype, int rtype, double scale) { c_impulse.resize(N * 2); double ft = (f_high - f_low) / (2.0 * samplerate); double ft_rad = TWOPI * ft; double w_osc = PI * (f_high + f_low) / samplerate; double m = 0.5 * (double)(N - 1); double delta = PI / m; double cosphi; double posi; double posj; double sinc; double window; double coef; if (N & 1) { switch (rtype) { case 0: c_impulse[N >> 1] = (float) (scale * 2.0 * ft); break; case 1: c_impulse[N - 1] = (float) (scale * 2.0 * ft); c_impulse[ N ] = 0.0; break; default: break; } } for (int i = (N + 1) / 2, j = N / 2 - 1; i < N; i++, j--) { posi = (double)i - m; posj = (double)j - m; sinc = sin (ft_rad * posi) / (PI * posi); if (wintype == 1) // Blackman-Harris 7-term { cosphi = cos (delta * i); window = + 6.3964424114390378e-02 + cosphi * ( - 2.3993864599352804e-01 + cosphi * ( + 3.5015956323820469e-01 + cosphi * ( - 2.4774111897080783e-01 + cosphi * ( + 8.5438256055858031e-02 + cosphi * ( - 1.2320203369293225e-02 + cosphi * ( + 4.3778825791773474e-04 )))))); } else // Blackman-Harris 4-term { cosphi = cos (delta * i); window = + 0.21747 + cosphi * ( - 0.45325 + cosphi * ( + 0.28256 + cosphi * ( - 0.04672 ))); } coef = scale * sinc * window; switch (rtype) { case 0: c_impulse[i] = (float) (+ coef * cos (posi * w_osc)); c_impulse[j] = (float) (+ coef * cos (posj * w_osc)); break; case 1: c_impulse[2 * i + 0] = (float) (+ coef * cos (posi * w_osc)); c_impulse[2 * i + 1] = (float) (- coef * sin (posi * w_osc)); c_impulse[2 * j + 0] = (float) (+ coef * cos (posj * w_osc)); c_impulse[2 * j + 1] = (float) (- coef * sin (posj * w_osc)); break; default: break; } } } void FIR::fir_read (std::vector& c_impulse, int N, const char *filename, int rtype, float scale) // N = number of real or complex coefficients (see rtype) // *filename = filename // rtype = 0: real coefficients // rtype = 1: complex coefficients // scale = a scale factor that will be applied to the returned coefficients; // if this is not needed, set it to 1.0 // NOTE: The number of values in the file must NOT exceed those implied by N and rtype { FILE *file; float I; float Q; c_impulse.resize(N * 2); std::fill(c_impulse.begin(), c_impulse.end(), 0); file = fopen (filename, "r"); if (!file) { return; } for (int i = 0; i < N; i++) { // read in the complex impulse response // NOTE: IF the freq response is symmetrical about 0, the imag coeffs will all be zero. switch (rtype) { case 0: { int r = fscanf (file, "%e", &I); fprintf(stderr, "^%d parameters read\n", r); c_impulse[i] = + scale * I; break; } case 1: { int r = fscanf (file, "%e", &I); fprintf(stderr, "%d parameters read\n", r); r = fscanf (file, "%e", &Q); fprintf(stderr, "%d parameters read\n", r); c_impulse[2 * i + 0] = + scale * I; c_impulse[2 * i + 1] = - scale * Q; break; } default: break; } } fclose (file); } void FIR::analytic (int N, float* in, float* out) { if (N < 2) { return; } double inv_N = 1.0 / (double) N; double two_inv_N = 2.0 * inv_N; std::vector x(N * 2); fftwf_plan pfor = fftwf_plan_dft_1d ( N, (fftwf_complex *) in, (fftwf_complex *) x.data(), FFTW_FORWARD, FFTW_PATIENT ); fftwf_plan prev = fftwf_plan_dft_1d ( N, (fftwf_complex *) x.data(), (fftwf_complex *) out, FFTW_BACKWARD, FFTW_PATIENT ); fftwf_execute (pfor); x[0] *= (float) inv_N; x[1] *= (float) inv_N; for (int i = 1; i < N / 2; i++) { x[2 * i + 0] *= (float) two_inv_N; x[2 * i + 1] *= (float) two_inv_N; } x[N + 0] *= (float) inv_N; x[N + 1] *= (float) inv_N; memset (&x[N + 2], 0, (N - 2) * sizeof (float)); fftwf_execute (prev); fftwf_destroy_plan (prev); fftwf_destroy_plan (pfor); } void FIR::mp_imp (int N, std::vector& fir, std::vector& mpfir, int pfactor, int polarity) { int i; int size = N * pfactor; double inv_PN = 1.0 / (double)size; std::vector firpad(size * 2); std::vector firfreq(size * 2); std::vector mag(size); std::vector ana(size * 2); std::vector impulse(size * 2); std::vector newfreq(size * 2); std::copy(fir.begin(), fir.begin() + N * 2, firpad.begin()); fftwf_plan pfor = fftwf_plan_dft_1d ( size, (fftwf_complex *) firpad.data(), (fftwf_complex *) firfreq.data(), FFTW_FORWARD, FFTW_PATIENT); fftwf_plan prev = fftwf_plan_dft_1d ( size, (fftwf_complex *) newfreq.data(), (fftwf_complex *) impulse.data(), FFTW_BACKWARD, FFTW_PATIENT ); fftwf_execute (pfor); for (i = 0; i < size; i++) { double xr = firfreq[2 * i + 0]; double xi = firfreq[2 * i + 1]; mag[i] = sqrt (xr*xr + xi*xi) * inv_PN; if (mag[i] > 0.0) ana[2 * i + 0] = (float) log (mag[i]); else ana[2 * i + 0] = log (std::numeric_limits::min()); } analytic (size, ana.data(), ana.data()); for (i = 0; i < size; i++) { newfreq[2 * i + 0] = (float) (+ mag[i] * cos (ana[2 * i + 1])); if (polarity) newfreq[2 * i + 1] = (float) (+ mag[i] * sin (ana[2 * i + 1])); else newfreq[2 * i + 1] = (float) (- mag[i] * sin (ana[2 * i + 1])); } fftwf_execute (prev); if (polarity) std::copy(&impulse[2 * (pfactor - 1) * N], &impulse[2 * (pfactor - 1) * N] + N * 2, mpfir.begin()); else std::copy(impulse.begin(), impulse.end(), mpfir.begin()); fftwf_destroy_plan (prev); fftwf_destroy_plan (pfor); } // impulse response of a zero frequency filter comprising a cascade of two resonators, // each followed by a detrending filter void FIR::zff_impulse(std::vector& c_dresdet, int nc, float scale) { // nc = number of coefficients (power of two) int n_resdet = nc / 2 - 1; // size of single zero-frequency resonator with detrender int n_dresdet = 2 * n_resdet - 1; // size of two cascaded units; when we convolve these we get 2 * n - 1 length // allocate the single and make the values std::vector resdet(n_resdet); // (float*)malloc0 (n_resdet * sizeof(float)); for (int i = 1, j = 0, k = n_resdet - 1; i < nc / 4; i++, j++, k--) resdet[j] = resdet[k] = (float)(i * (i + 1) / 2); resdet[nc / 4 - 1] = (float)(nc / 4 * (nc / 4 + 1) / 2); // print_impulse ("resdet", n_resdet, resdet, 0, 0); // allocate the float and complex versions and make the values std::vector dresdet(n_dresdet); auto div = (float) ((nc / 2 + 1) * (nc / 2 + 1)); // calculate divisor c_dresdet.resize(nc * 2); for (int n = 0; n < n_dresdet; n++) // convolve to make the cascade { for (int k = 0; k < n_resdet; k++) if ((n - k) >= 0 && (n - k) < n_resdet) dresdet[n] += resdet[k] * resdet[n - k]; dresdet[n] /= div; c_dresdet[2 * n + 0] = dresdet[n] * scale; c_dresdet[2 * n + 1] = 0.0; } } } // namespace WDSP