/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2020, 2023 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "dsp/samplesinkfifo.h" #include "util/messagequeue.h" #include "sigmffiledata.h" #include "sigmffileconvert.h" #include "sigmffileinputsettings.h" #include "sigmffileinputworker.h" MESSAGE_CLASS_DEFINITION(SigMFFileInputWorker::MsgReportEOF, Message) MESSAGE_CLASS_DEFINITION(SigMFFileInputWorker::MsgReportTrackChange, Message) SigMFFileInputWorker::SigMFFileInputWorker(std::ifstream *samplesStream, SampleSinkFifo* sampleFifo, const QTimer& timer, MessageQueue *fileInputMessageQueue, QObject* parent) : QObject(parent), m_running(false), m_currentTrackIndex(0), m_ifstream(samplesStream), m_fileBuf(0), m_convertBuf(0), m_bufsize(0), m_chunksize(0), m_sampleFifo(sampleFifo), m_samplesCount(0), m_timer(timer), m_fileInputMessageQueue(fileInputMessageQueue), m_samplerate(48000), m_accelerationFactor(1), m_samplesize(16), m_samplebytes(2), m_throttlems(FILESOURCE_THROTTLE_MS), m_throttleToggle(false), m_sigMFConverter(nullptr) { } SigMFFileInputWorker::~SigMFFileInputWorker() { if (m_running) { stopWork(); } if (m_fileBuf != 0) { free(m_fileBuf); } if (m_convertBuf != 0) { free(m_convertBuf); } } void SigMFFileInputWorker::startWork() { qDebug() << "SigMFFileInputWorker::startWork: "; if (m_ifstream->is_open()) { qDebug() << "SigMFFileInputWorker::startWork: file stream open, starting..."; m_elapsedTimer.start(); connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick())); m_running = true; } else { qDebug() << "SigMFFileInputWorker::startWork: file stream closed, not starting."; } } void SigMFFileInputWorker::stopWork() { qDebug() << "SigMFFileInputWorker::stopWork"; disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(tick())); m_running = false; } void SigMFFileInputWorker::setMetaInformation(const SigMFFileMetaInfo *metaInfo, const QList *captures) { m_metaInfo = metaInfo; m_captures = captures; m_samplerate = m_metaInfo->m_coreSampleRate; m_samplesize = m_metaInfo->m_dataType.m_sampleBits; setConverter(); setSampleRate(); } void SigMFFileInputWorker::setTrackIndex(int trackIndex) { m_currentTrackIndex = trackIndex; m_samplesCount = m_captures->at(m_currentTrackIndex).m_sampleStart; int sampleRate = m_captures->at(m_currentTrackIndex).m_sampleRate; if (sampleRate != m_samplerate) { m_samplerate = sampleRate; setSampleRate(); } MsgReportTrackChange *message = MsgReportTrackChange::create(m_currentTrackIndex); m_fileInputMessageQueue->push(message); } void SigMFFileInputWorker::setAccelerationFactor(int accelerationFactor) { m_accelerationFactor = accelerationFactor; setSampleRate(); } void SigMFFileInputWorker::setSampleRate() { bool running = m_running; if (running) { stopWork(); } m_samplebytes = SigMFFileInputSettings::bitsToBytes(m_samplesize); m_chunksize = (m_accelerationFactor * m_samplerate * 2 * m_samplebytes * m_throttlems) / 1000; setBuffers(m_chunksize); if (running) { startWork(); } } void SigMFFileInputWorker::setBuffers(std::size_t chunksize) { if (chunksize > m_bufsize) { m_bufsize = chunksize; int nbSamples = m_bufsize/(2 * m_samplebytes); if (m_fileBuf == 0) { qDebug() << "FileInputThread::setBuffers: Allocate file buffer"; m_fileBuf = (quint8*) malloc(m_bufsize); } else { qDebug() << "FileInputThread::setBuffers: Re-allocate file buffer"; quint8 *buf = m_fileBuf; m_fileBuf = (quint8*) realloc((void*) m_fileBuf, m_bufsize); if (!m_fileBuf) free(buf); } if (m_convertBuf == 0) { qDebug() << "FileInputThread::setBuffers: Allocate conversion buffer"; m_convertBuf = (quint8*) malloc(nbSamples*sizeof(Sample)); } else { qDebug() << "FileInputThread::setBuffers: Re-allocate conversion buffer"; quint8 *buf = m_convertBuf; m_convertBuf = (quint8*) realloc((void*) m_convertBuf, nbSamples*sizeof(Sample)); if (!m_convertBuf) free(buf); } qDebug() << "FileInputThread::setBuffers: size: " << m_bufsize << " #samples: " << nbSamples; } } void SigMFFileInputWorker::tick() { if (m_running) { qint64 throttlems = m_elapsedTimer.restart(); if (throttlems != m_throttlems) { m_throttlems = throttlems; m_chunksize = 2 * m_samplebytes * ((m_samplerate * m_accelerationFactor * (m_throttlems+(m_throttleToggle ? 1 : 0))) / 1000); m_throttleToggle = !m_throttleToggle; setBuffers(m_chunksize); } // read samples directly feeding the SampleFifo (no callback) if (m_samplesCount + m_chunksize > m_totalSamples) { m_ifstream->read(reinterpret_cast(m_fileBuf), m_totalSamples - m_samplesCount); } else { m_ifstream->read(reinterpret_cast(m_fileBuf), m_chunksize); } if ((m_samplesCount + m_chunksize > m_totalSamples) || m_ifstream->eof()) { writeToSampleFifo(m_fileBuf, (qint32) m_ifstream->gcount()); // take what has been read MsgReportEOF *message = MsgReportEOF::create(); m_fileInputMessageQueue->push(message); } else { writeToSampleFifo(m_fileBuf, (qint32) m_chunksize); m_samplesCount += m_chunksize / (2 * m_samplebytes); if ((m_currentTrackIndex + 1 < m_captures->size()) && (m_samplesCount > m_captures->at(m_currentTrackIndex+1).m_sampleStart)) { m_currentTrackIndex++; int sampleRate = m_captures->at(m_currentTrackIndex).m_sampleRate; if (sampleRate != m_samplerate) { m_samplerate = sampleRate; setSampleRate(); } MsgReportTrackChange *message = MsgReportTrackChange::create(m_currentTrackIndex); m_fileInputMessageQueue->push(message); } } } } void SigMFFileInputWorker::setConverter() { if (m_metaInfo->m_dataType.m_floatingPoint) // float { if (m_metaInfo->m_dataType.m_complex) { if (m_metaInfo->m_dataType.m_bigEndian) { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } else { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } } else { if (m_metaInfo->m_dataType.m_bigEndian) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } } else if ((m_metaInfo->m_dataType.m_signed) && (m_samplesize == 8)) // i8 { if (m_metaInfo->m_dataType.m_complex) { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } else { m_sigMFConverter = new SigMFConverter(); } } else if ((!m_metaInfo->m_dataType.m_signed) && (m_samplesize == 8)) // u8 { if (m_metaInfo->m_dataType.m_complex) { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } else { m_sigMFConverter = new SigMFConverter(); } } else if ((m_metaInfo->m_dataType.m_signed) && (m_samplesize == 16)) // i16 { if (m_metaInfo->m_dataType.m_complex) { if (m_metaInfo->m_dataType.m_bigEndian) { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } else { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } } else { if (m_metaInfo->m_dataType.m_bigEndian) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } } else if ((!m_metaInfo->m_dataType.m_signed) && (m_samplesize == 16)) // u16 { if (m_metaInfo->m_dataType.m_complex) { if (m_metaInfo->m_dataType.m_bigEndian) { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } else { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } } else { if (m_metaInfo->m_dataType.m_bigEndian) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } } else if ((m_metaInfo->m_dataType.m_signed) && (m_samplesize == 24)) // i24 (SDRangel special) { m_sigMFConverter = new SigMFConverter(); } else if ((m_metaInfo->m_dataType.m_signed) && (m_samplesize == 32)) // i32 { if (m_metaInfo->m_dataType.m_complex) { if (m_metaInfo->m_dataType.m_bigEndian) { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } else { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } } else { if (m_metaInfo->m_dataType.m_bigEndian) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } } else if ((!m_metaInfo->m_dataType.m_signed) && (m_samplesize == 32)) // u32 { if (m_metaInfo->m_dataType.m_complex) { if (m_metaInfo->m_dataType.m_bigEndian) { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } else { if (m_metaInfo->m_dataType.m_swapIQ) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } } else { if (m_metaInfo->m_dataType.m_bigEndian) { m_sigMFConverter = new SigMFConverter(); } else { m_sigMFConverter = new SigMFConverter(); } } } } void SigMFFileInputWorker::writeToSampleFifo(const quint8* buf, qint32 nbBytes) { if (!m_sigMFConverter) { qDebug("SigMFFileInputWorker::writeToSampleFifo: no converter - probably sample format is not supported"); return; } #if defined(__WINDOWS__) || (BYTE_ORDER == LITTLE_ENDIAN) if ((m_metaInfo->m_dataType.m_complex) && (!m_metaInfo->m_dataType.m_bigEndian) && (!m_metaInfo->m_dataType.m_swapIQ)) { if ((m_samplesize == 16) && (SDR_RX_SAMP_SZ == 16)) { m_sampleFifo->write(buf, nbBytes); return; } if ((m_samplesize == 24) && (SDR_RX_SAMP_SZ == 24)) { m_sampleFifo->write(buf, nbBytes); return; } } #endif int nbSamples = m_sigMFConverter->convert((FixReal *) m_convertBuf, buf, nbBytes); m_sampleFifo->write(m_convertBuf, nbSamples*sizeof(Sample)); } void SigMFFileInputWorker::writeToSampleFifoBAK(const quint8* buf, qint32 nbBytes) { if (m_metaInfo->m_dataType.m_floatingPoint) // FP assumes 32 bit floats (float) always { FixReal *convertBuf = (FixReal *) m_convertBuf; const float *fileBuf = (float *) buf; int nbSamples; if (m_metaInfo->m_dataType.m_complex) { nbSamples = nbBytes / (2 * m_samplebytes); for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[2*is] * SDR_RX_SCALEF; convertBuf[2*is+1] = fileBuf[2*is+1] * SDR_RX_SCALEF; } } else { nbSamples = nbBytes / m_samplebytes; for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[is] * SDR_RX_SCALEF; convertBuf[2*is+1] = 0; } } m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample)); } else if (m_metaInfo->m_dataType.m_signed) // signed integers { if (m_samplesize == 8) { FixReal *convertBuf = (FixReal *) m_convertBuf; const int8_t *fileBuf = (int8_t *) buf; int nbSamples; if (m_metaInfo->m_dataType.m_complex) { nbSamples = nbBytes / (2 * m_samplebytes); for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[2*is]; convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16; convertBuf[2*is+1] = fileBuf[2*is+1]; convertBuf[2*is+1] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16; } } else { nbSamples = nbBytes / m_samplebytes; for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[is]; convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16; convertBuf[2*is+1] = 0; } } m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample)); } else if (m_samplesize == 16) { if (SDR_RX_SAMP_SZ == 16) { if (m_metaInfo->m_dataType.m_complex) { m_sampleFifo->write(buf, nbBytes); } else { FixReal *convertBuf = (FixReal *) m_convertBuf; const int16_t *fileBuf = (int16_t *) buf; int nbSamples = nbBytes / m_samplebytes; for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[2*is]; convertBuf[2*is+1] = 0; } m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample)); } } else if (SDR_RX_SAMP_SZ == 24) { FixReal *convertBuf = (FixReal *) m_convertBuf; const int16_t *fileBuf = (int16_t *) buf; int nbSamples; if (m_metaInfo->m_dataType.m_complex) { nbSamples = nbBytes / (2 * m_samplebytes); for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[2*is] << 8; convertBuf[2*is+1] = fileBuf[2*is+1] << 8; } } else { nbSamples = nbBytes / m_samplebytes; for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[is] << 8; convertBuf[2*is+1] = 0; } } m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample)); } } else if (m_samplesize == 24) { if (SDR_RX_SAMP_SZ == 24) { if (m_metaInfo->m_dataType.m_complex) { m_sampleFifo->write(buf, nbBytes); } else { FixReal *convertBuf = (FixReal *) m_convertBuf; const int32_t *fileBuf = (int32_t *) buf; int nbSamples = nbBytes / m_samplebytes; for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[2*is]; convertBuf[2*is+1] = 0; } m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample)); } } else if (SDR_RX_SAMP_SZ == 16) { FixReal *convertBuf = (FixReal *) m_convertBuf; const int32_t *fileBuf = (int32_t *) buf; int nbSamples; if (m_metaInfo->m_dataType.m_complex) { nbSamples = nbBytes / (2 * m_samplebytes); for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[2*is] >> 8; convertBuf[2*is+1] = fileBuf[2*is+1] >> 8; } } else { nbSamples = nbBytes / m_samplebytes; for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[is] >> 8; convertBuf[2*is+1] = 0; } } m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample)); } } if (m_samplesize == 32) { FixReal *convertBuf = (FixReal *) m_convertBuf; const int32_t *fileBuf = (int32_t *) buf; int nbSamples; if (m_metaInfo->m_dataType.m_complex) { nbSamples = nbBytes / (2 * m_samplebytes); for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[2*is] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16; convertBuf[2*is+1] = fileBuf[2*is+1] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16; } } else { nbSamples = nbBytes / m_samplebytes; for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[is] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16; convertBuf[2*is+1] = 0; } } m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample)); } } else // unsigned integers { if (m_samplesize == 8) { FixReal *convertBuf = (FixReal *) m_convertBuf; const uint8_t *fileBuf = (uint8_t *) buf; int nbSamples; if (m_metaInfo->m_dataType.m_complex) { nbSamples = nbBytes / (2 * m_samplebytes); for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[2*is] - 128; convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16; convertBuf[2*is+1] = fileBuf[2*is+1] - 128; convertBuf[2*is+1] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16; } } else { nbSamples = nbBytes / m_samplebytes; for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[is] - 128; convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16; convertBuf[2*is+1] = 0; } } m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample)); } else if (m_samplesize == 16) { FixReal *convertBuf = (FixReal *) m_convertBuf; const uint16_t *fileBuf = (uint16_t *) buf; int nbSamples; if (m_metaInfo->m_dataType.m_complex) { nbSamples = nbBytes / (2 * m_samplebytes); for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[2*is] - 32768; convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 0 : 8; convertBuf[2*is+1] = fileBuf[2*is+1] - 32768; convertBuf[2*is+1] <<= (SDR_RX_SAMP_SZ == 16) ? 0 : 8; } } else { nbSamples = nbBytes / m_samplebytes; for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = fileBuf[is] - 32768; convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 0 : 8; convertBuf[2*is+1] = 0; } } m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample)); } else if (m_samplesize == 32) { FixReal *convertBuf = (FixReal *) m_convertBuf; const uint32_t *fileBuf = (uint32_t *) buf; int nbSamples; if (m_metaInfo->m_dataType.m_complex) { nbSamples = nbBytes / (2 * m_samplebytes); for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = (fileBuf[2*is] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16) - ((SDR_RX_SAMP_SZ == 24) ? (1<<23) : (1<<15)); convertBuf[2*is+1] = (fileBuf[2*is+1] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16) - ((SDR_RX_SAMP_SZ == 24) ? (1<<23) : (1<<15));; } } else { nbSamples = nbBytes / m_samplebytes; for (int is = 0; is < nbSamples; is++) { convertBuf[2*is] = (fileBuf[is] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16) - ((SDR_RX_SAMP_SZ == 24) ? (1<<23) : (1<<15)); convertBuf[2*is+1] = 0; } } m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample)); } } }