///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see . //
///////////////////////////////////////////////////////////////////////////////////
#include "udpsrc.h"
#include
#include
#include
#include "dsp/channelizer.h"
#include "dsp/dspengine.h"
#include "udpsrcgui.h"
MESSAGE_CLASS_DEFINITION(UDPSrc::MsgUDPSrcConfigure, Message)
MESSAGE_CLASS_DEFINITION(UDPSrc::MsgUDPSrcConfigureImmediate, Message)
MESSAGE_CLASS_DEFINITION(UDPSrc::MsgUDPSrcSpectrum, Message)
UDPSrc::UDPSrc(MessageQueue* uiMessageQueue, UDPSrcGUI* udpSrcGUI, SampleSink* spectrum) :
m_settingsMutex(QMutex::Recursive),
m_audioFifo(4, 24000),
m_audioActive(false),
m_audioStereo(false),
m_volume(20)
{
setObjectName("UDPSrc");
m_socket = new QUdpSocket(this);
m_audioSocket = new QUdpSocket(this);
m_audioBuffer.resize(1<<9);
m_audioBufferFill = 0;
m_inputSampleRate = 96000;
m_sampleFormat = FormatSSB;
m_outputSampleRate = 48000;
m_rfBandwidth = 32000;
m_udpPort = 9999;
m_audioPort = m_udpPort - 1;
m_nco.setFreq(0, m_inputSampleRate);
m_interpolator.create(16, m_inputSampleRate, m_rfBandwidth / 2.0);
m_sampleDistanceRemain = m_inputSampleRate / m_outputSampleRate;
m_uiMessageQueue = uiMessageQueue;
m_udpSrcGUI = udpSrcGUI;
m_spectrum = spectrum;
m_spectrumEnabled = false;
m_nextSSBId = 0;
m_nextS16leId = 0;
m_last = 0;
m_this = 0;
m_scale = 0;
m_boost = 0;
m_magsq = 0;
m_sampleBufferSSB.resize(udpFftLen);
UDPFilter = new fftfilt(0.3 / 48.0, 16.0 / 48.0, udpFftLen);
if (m_audioSocket->bind(QHostAddress::LocalHost, m_audioPort))
{
qDebug("UDPSrc::UDPSrc: bind audio socket to port %d", m_audioPort);
connect(m_audioSocket, SIGNAL(readyRead()), this, SLOT(audioReadyRead()));
}
else
{
qWarning("UDPSrc::UDPSrc: cannot bind audio port");
}
//DSPEngine::instance()->addAudioSink(&m_audioFifo);
}
UDPSrc::~UDPSrc()
{
delete m_audioSocket;
delete m_socket;
if (UDPFilter) delete UDPFilter;
if (m_audioActive) DSPEngine::instance()->removeAudioSink(&m_audioFifo);
}
void UDPSrc::configure(MessageQueue* messageQueue,
SampleFormat sampleFormat,
Real outputSampleRate,
Real rfBandwidth,
QString& udpAddress,
int udpPort,
int audioPort)
{
Message* cmd = MsgUDPSrcConfigure::create(sampleFormat,
outputSampleRate,
rfBandwidth,
udpAddress,
udpPort,
audioPort);
messageQueue->push(cmd);
}
void UDPSrc::configureImmediate(MessageQueue* messageQueue,
bool audioActive,
bool audioStereo,
int boost,
int volume)
{
Message* cmd = MsgUDPSrcConfigureImmediate::create(
audioActive,
audioStereo,
boost,
volume);
messageQueue->push(cmd);
}
void UDPSrc::setSpectrum(MessageQueue* messageQueue, bool enabled)
{
Message* cmd = MsgUDPSrcSpectrum::create(enabled);
messageQueue->push(cmd);
}
void UDPSrc::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly)
{
Complex ci;
fftfilt::cmplx* sideband;
Real l, r;
m_sampleBuffer.clear();
m_settingsMutex.lock();
// Rtl-Sdr uses full 16-bit scale; FCDPP does not
//int rescale = 32768 * (1 << m_boost);
int rescale = (1 << m_boost);
for(SampleVector::const_iterator it = begin; it < end; ++it) {
//Complex c(it->real() / 32768.0f, it->imag() / 32768.0f);
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if(m_interpolator.interpolate(&m_sampleDistanceRemain, c, &ci))
{
m_magsq = ((ci.real()*ci.real() + ci.imag()*ci.imag())*rescale*rescale) / (1<<30);
m_sampleBuffer.push_back(Sample(ci.real() * rescale, ci.imag() * rescale));
m_sampleDistanceRemain += m_inputSampleRate / m_outputSampleRate;
}
}
if((m_spectrum != 0) && (m_spectrumEnabled))
{
m_spectrum->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), positiveOnly);
}
if (m_sampleFormat == FormatSSB)
{
for(SampleVector::const_iterator it = m_sampleBuffer.begin(); it != m_sampleBuffer.end(); ++it)
{
//Complex cj(it->real() / 30000.0, it->imag() / 30000.0);
Complex cj(it->real(), it->imag());
int n_out = UDPFilter->runSSB(cj, &sideband, true);
if (n_out)
{
for (int i = 0; i < n_out; i+=2)
{
//l = (sideband[i].real() + sideband[i].imag()) * 0.7 * 32000.0;
//r = (sideband[i+1].real() + sideband[i+1].imag()) * 0.7 * 32000.0;
l = (sideband[i].real() + sideband[i].imag()) * 0.7;
r = (sideband[i+1].real() + sideband[i+1].imag()) * 0.7;
m_sampleBufferSSB.push_back(Sample(l, r));
}
m_socket->writeDatagram((const char*)&m_sampleBufferSSB[0], (qint64 ) (n_out * 2), m_udpAddress, m_udpPort);
m_sampleBufferSSB.clear();
}
}
}
else if (m_sampleFormat == FormatNFM)
{
for(SampleVector::const_iterator it = m_sampleBuffer.begin(); it != m_sampleBuffer.end(); ++it)
{
Complex cj(it->real() / 32768.0f, it->imag() / 32768.0f);
// An FFT filter here is overkill, but was already set up for SSB
int n_out = UDPFilter->runFilt(cj, &sideband);
if (n_out)
{
Real sum = 1.0;
for (int i = 0; i < n_out; i+=2)
{
l = m_this.real() * (m_last.imag() - sideband[i].imag())
- m_this.imag() * (m_last.real() - sideband[i].real());
m_last = sideband[i];
r = m_last.real() * (m_this.imag() - sideband[i+1].imag())
- m_last.imag() * (m_this.real() - sideband[i+1].real());
m_this = sideband[i+1];
m_sampleBufferSSB.push_back(Sample(l * m_scale, r * m_scale));
sum += m_this.real() * m_this.real() + m_this.imag() * m_this.imag();
}
// TODO: correct levels
m_scale = 24000 * udpFftLen / sum;
m_socket->writeDatagram((const char*)&m_sampleBufferSSB[0], (qint64 ) (n_out * 2), m_udpAddress, m_udpPort);
m_sampleBufferSSB.clear();
}
}
}
else
{
m_socket->writeDatagram((const char*)&m_sampleBuffer[0], (qint64 ) (m_sampleBuffer.size() * 4), m_udpAddress, m_udpPort);
}
m_settingsMutex.unlock();
}
void UDPSrc::start()
{
}
void UDPSrc::stop()
{
}
bool UDPSrc::handleMessage(const Message& cmd)
{
qDebug() << "UDPSrc::handleMessage";
if (Channelizer::MsgChannelizerNotification::match(cmd))
{
Channelizer::MsgChannelizerNotification& notif = (Channelizer::MsgChannelizerNotification&) cmd;
m_settingsMutex.lock();
m_inputSampleRate = notif.getSampleRate();
m_nco.setFreq(-notif.getFrequencyOffset(), m_inputSampleRate);
m_interpolator.create(16, m_inputSampleRate, m_rfBandwidth / 2.0);
m_sampleDistanceRemain = m_inputSampleRate / m_outputSampleRate;
m_settingsMutex.unlock();
qDebug() << "UDPSrc::handleMessage: MsgChannelizerNotification: m_inputSampleRate: " << m_inputSampleRate
<< " frequencyOffset: " << notif.getFrequencyOffset();
return true;
}
else if (MsgUDPSrcConfigureImmediate::match(cmd))
{
MsgUDPSrcConfigureImmediate& cfg = (MsgUDPSrcConfigureImmediate&) cmd;
m_settingsMutex.lock();
if (cfg.getAudioActive() != m_audioActive)
{
m_audioActive = cfg.getAudioActive();
if (m_audioActive)
{
m_audioBufferFill = 0;
DSPEngine::instance()->addAudioSink(&m_audioFifo);
}
else
{
DSPEngine::instance()->removeAudioSink(&m_audioFifo);
}
}
if (cfg.getAudioStereo() != m_audioStereo)
{
m_audioStereo = cfg.getAudioStereo();
}
if (cfg.getBoost() != m_boost)
{
m_boost = cfg.getBoost();
}
if (cfg.getVolume() != m_volume)
{
m_volume = cfg.getVolume();
}
m_settingsMutex.unlock();
qDebug() << "UDPSrc::handleMessage: MsgUDPSrcConfigureImmediate: "
<< " m_audioActive: " << m_audioActive
<< " m_audioStereo: " << m_audioStereo
<< " m_boost: " << m_boost
<< " m_volume: " << m_volume;
return true;
}
else if (MsgUDPSrcConfigure::match(cmd))
{
MsgUDPSrcConfigure& cfg = (MsgUDPSrcConfigure&) cmd;
m_settingsMutex.lock();
m_sampleFormat = cfg.getSampleFormat();
m_outputSampleRate = cfg.getOutputSampleRate();
m_rfBandwidth = cfg.getRFBandwidth();
if (cfg.getUDPAddress() != m_udpAddress.toString())
{
m_udpAddress.setAddress(cfg.getUDPAddress());
}
if (cfg.getUDPPort() != m_udpPort)
{
m_udpPort = cfg.getUDPPort();
}
if (cfg.getAudioPort() != m_audioPort)
{
m_audioPort = cfg.getAudioPort();
disconnect(m_audioSocket, SIGNAL(readyRead()), this, SLOT(audioReadyRead()));
delete m_audioSocket;
m_audioSocket = new QUdpSocket(this);
if (m_audioSocket->bind(QHostAddress::Any, m_audioPort))
{
connect(m_audioSocket, SIGNAL(readyRead()), this, SLOT(audioReadyRead()));
}
else
{
qWarning("UDPSrc::handleMessage: cannot bind audio socket");
}
}
m_interpolator.create(16, m_inputSampleRate, m_rfBandwidth / 2.0);
m_sampleDistanceRemain = m_inputSampleRate / m_outputSampleRate;
if (m_sampleFormat == FormatSSB)
{
UDPFilter->create_filter(0.3 / 48.0, m_rfBandwidth / 2.0 / m_outputSampleRate);
}
else
{
UDPFilter->create_filter(0.0, m_rfBandwidth / 2.0 / m_outputSampleRate);
}
m_settingsMutex.unlock();
qDebug() << "UDPSrc::handleMessage: MsgUDPSrcConfigure: m_sampleFormat: " << m_sampleFormat
<< " m_outputSampleRate: " << m_outputSampleRate
<< " m_rfBandwidth: " << m_rfBandwidth
<< " m_boost: " << m_boost
<< " m_udpAddress: " << cfg.getUDPAddress()
<< " m_udpPort: " << m_udpPort
<< " m_audioPort: " << m_audioPort;
return true;
}
else if (MsgUDPSrcSpectrum::match(cmd))
{
MsgUDPSrcSpectrum& spc = (MsgUDPSrcSpectrum&) cmd;
m_spectrumEnabled = spc.getEnabled();
qDebug() << "UDPSrc::handleMessage: MsgUDPSrcSpectrum: m_spectrumEnabled: " << m_spectrumEnabled;
return true;
}
else
{
if(m_spectrum != 0)
{
return m_spectrum->handleMessage(cmd);
}
else
{
return false;
}
}
}
void UDPSrc::audioReadyRead()
{
QByteArray buffer;
while (m_audioSocket->hasPendingDatagrams())
{
buffer.resize(m_audioSocket->pendingDatagramSize());
m_audioSocket->readDatagram(buffer.data(), buffer.size(), 0, 0);
//qDebug("UDPSrc::audioReadyRead: %d", buffer.size());
if (m_audioActive)
{
if (m_audioStereo)
{
for (int i = 0; i < buffer.size() - 3; i += 4)
{
qint16 l_sample = (qint16) *(&buffer.data()[i]);
qint16 r_sample = (qint16) *(&buffer.data()[i+2]);
m_audioBuffer[m_audioBufferFill].l = l_sample * 10 * m_volume;
m_audioBuffer[m_audioBufferFill].r = r_sample * 10 * m_volume;
++m_audioBufferFill;
if (m_audioBufferFill >= m_audioBuffer.size())
{
uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1);
if (res != m_audioBufferFill)
{
qDebug("UDPSrc::audioReadyRead: (stereo) lost %u samples", m_audioBufferFill - res);
}
m_audioBufferFill = 0;
}
}
}
else
{
for (int i = 0; i < buffer.size() - 1; i += 2)
{
qint16 sample = (qint16) *(&buffer.data()[i]);
m_audioBuffer[m_audioBufferFill].l = sample * 10 * m_volume;
m_audioBuffer[m_audioBufferFill].r = sample * 10 * m_volume;
++m_audioBufferFill;
if (m_audioBufferFill >= m_audioBuffer.size())
{
uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1);
if (res != m_audioBufferFill)
{
qDebug("UDPSrc::audioReadyRead: (mono) lost %u samples", m_audioBufferFill - res);
}
m_audioBufferFill = 0;
}
}
}
if (m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 0) != m_audioBufferFill)
{
qDebug("UDPSrc::audioReadyRead: lost samples");
}
m_audioBufferFill = 0;
}
}
//qDebug("UDPSrc::audioReadyRead: done");
}