/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "chanalyzerng.h" #include #include #include #include #include "audio/audiooutput.h" MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgConfigureChannelAnalyzer, Message) ChannelAnalyzerNG::ChannelAnalyzerNG(BasebandSampleSink* sampleSink) : m_sampleSink(sampleSink), m_settingsMutex(QMutex::Recursive) { m_undersampleCount = 0; m_sum = 0; m_usb = true; m_magsq = 0; m_interpolatorDistance = 1.0f; m_interpolatorDistanceRemain = 0.0f; SSBFilter = new fftfilt(m_config.m_LowCutoff / m_config.m_inputSampleRate, m_config.m_Bandwidth / m_config.m_inputSampleRate, ssbFftLen); DSBFilter = new fftfilt(m_config.m_Bandwidth / m_config.m_inputSampleRate, 2*ssbFftLen); apply(true); } ChannelAnalyzerNG::~ChannelAnalyzerNG() { if (SSBFilter) delete SSBFilter; if (DSBFilter) delete DSBFilter; } void ChannelAnalyzerNG::configure(MessageQueue* messageQueue, int channelSampleRate, Real Bandwidth, Real LowCutoff, int spanLog2, bool ssb) { Message* cmd = MsgConfigureChannelAnalyzer::create(channelSampleRate, Bandwidth, LowCutoff, spanLog2, ssb); messageQueue->push(cmd); } void ChannelAnalyzerNG::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly) { fftfilt::cmplx *sideband; int n_out; int decim = 1<real() / 32768.0f, it->imag() / 32768.0f); Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); processOneSample(c, sideband); } if(m_sampleSink != NULL) { m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), m_running.m_ssb); // m_ssb = positive only } m_sampleBuffer.clear(); m_settingsMutex.unlock(); } void ChannelAnalyzerNG::start() { } void ChannelAnalyzerNG::stop() { } bool ChannelAnalyzerNG::handleMessage(const Message& cmd) { float bandwidth, lowCutoff; qDebug() << "ChannelAnalyzerNG::handleMessage: " << cmd.getIdentifier(); if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; m_config.m_inputSampleRate = notif.getSampleRate(); m_config.m_frequency = notif.getFrequencyOffset(); qDebug() << "ChannelAnalyzerNG::handleMessage: MsgChannelizerNotification:" << " m_sampleRate: " << m_config.m_inputSampleRate << " frequencyOffset: " << m_config.m_frequency; apply(); return true; } else if (MsgConfigureChannelAnalyzer::match(cmd)) { MsgConfigureChannelAnalyzer& cfg = (MsgConfigureChannelAnalyzer&) cmd; m_config.m_channelSampleRate = cfg.getChannelSampleRate(); m_config.m_Bandwidth = cfg.getBandwidth(); m_config.m_LowCutoff = cfg.getLoCutoff(); m_config.m_spanLog2 = cfg.getSpanLog2(); m_config.m_ssb = cfg.getSSB(); qDebug() << "ChannelAnalyzerNG::handleMessage: MsgConfigureChannelAnalyzer:" << " m_channelSampleRate: " << m_config.m_channelSampleRate << " m_Bandwidth: " << m_config.m_Bandwidth << " m_LowCutoff: " << m_config.m_LowCutoff << " m_spanLog2: " << m_config.m_spanLog2 << " m_ssb: " << m_config.m_ssb; apply(); return true; } else { if (m_sampleSink != 0) { return m_sampleSink->handleMessage(cmd); } else { return false; } } } void ChannelAnalyzerNG::apply(bool force) { if ((m_running.m_frequency != m_config.m_frequency) || (m_running.m_inputSampleRate != m_config.m_inputSampleRate) || force) { m_nco.setFreq(-m_config.m_frequency, m_config.m_inputSampleRate); } if ((m_running.m_inputSampleRate != m_config.m_inputSampleRate) || (m_running.m_channelSampleRate != m_config.m_channelSampleRate) || force) { m_settingsMutex.lock(); m_interpolator.create(16, m_config.m_inputSampleRate, m_config.m_inputSampleRate / 2.2); m_interpolatorDistanceRemain = 0.0f; m_interpolatorDistance = (Real) m_config.m_inputSampleRate / (Real) m_config.m_channelSampleRate; m_settingsMutex.unlock(); } if ((m_running.m_channelSampleRate != m_config.m_channelSampleRate) || (m_running.m_Bandwidth != m_config.m_Bandwidth) || (m_running.m_LowCutoff != m_config.m_LowCutoff) || force) { float bandwidth = m_config.m_Bandwidth; float lowCutoff = m_config.m_LowCutoff; if (bandwidth < 0) { bandwidth = -bandwidth; lowCutoff = -lowCutoff; m_usb = false; } else { m_usb = true; } if (bandwidth < 100.0f) { bandwidth = 100.0f; lowCutoff = 0; } m_settingsMutex.lock(); SSBFilter->create_filter(lowCutoff / m_config.m_channelSampleRate, bandwidth / m_config.m_channelSampleRate); DSBFilter->create_dsb_filter(bandwidth / m_config.m_channelSampleRate); m_settingsMutex.unlock(); } m_running.m_frequency = m_config.m_frequency; m_running.m_channelSampleRate = m_config.m_channelSampleRate; m_running.m_inputSampleRate = m_config.m_inputSampleRate; m_running.m_Bandwidth = m_config.m_Bandwidth; m_running.m_LowCutoff = m_config.m_LowCutoff; //m_settingsMutex.lock(); m_running.m_spanLog2 = m_config.m_spanLog2; m_running.m_ssb = m_config.m_ssb; //m_settingsMutex.unlock(); }