/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "chanalyzernggui.h" #include #include #include #include #include "dsp/threadedbasebandsamplesink.h" #include "ui_chanalyzernggui.h" #include "dsp/spectrumscopengcombovis.h" #include "dsp/spectrumvis.h" #include "dsp/scopevis.h" #include "gui/glspectrum.h" #include "gui/glscopeng.h" #include "plugin/pluginapi.h" #include "util/simpleserializer.h" #include "util/db.h" #include "gui/basicchannelsettingswidget.h" #include "dsp/dspengine.h" #include "mainwindow.h" #include "chanalyzerng.h" const QString ChannelAnalyzerNGGUI::m_channelID = "sdrangel.channel.chanalyzerng"; ChannelAnalyzerNGGUI* ChannelAnalyzerNGGUI::create(PluginAPI* pluginAPI, DeviceSourceAPI *deviceAPI) { ChannelAnalyzerNGGUI* gui = new ChannelAnalyzerNGGUI(pluginAPI, deviceAPI); return gui; } void ChannelAnalyzerNGGUI::destroy() { delete this; } void ChannelAnalyzerNGGUI::setName(const QString& name) { setObjectName(name); } QString ChannelAnalyzerNGGUI::getName() const { return objectName(); } qint64 ChannelAnalyzerNGGUI::getCenterFrequency() const { return m_channelMarker.getCenterFrequency(); } void ChannelAnalyzerNGGUI::setCenterFrequency(qint64 centerFrequency) { m_channelMarker.setCenterFrequency(centerFrequency); applySettings(); } void ChannelAnalyzerNGGUI::resetToDefaults() { blockApplySettings(true); ui->useRationalDownsampler->setChecked(false); ui->BW->setValue(30); ui->deltaFrequency->setValue(0); ui->spanLog2->setCurrentIndex(3); blockApplySettings(false); applySettings(); } QByteArray ChannelAnalyzerNGGUI::serialize() const { SimpleSerializer s(1); s.writeS32(1, m_channelMarker.getCenterFrequency()); s.writeS32(2, ui->BW->value()); s.writeBlob(3, ui->spectrumGUI->serialize()); s.writeU32(4, m_channelMarker.getColor().rgb()); s.writeS32(5, ui->lowCut->value()); s.writeS32(6, ui->spanLog2->currentIndex()); s.writeBool(7, ui->ssb->isChecked()); s.writeBlob(8, ui->scopeGUI->serialize()); s.writeU64(9, ui->channelSampleRate->getValueNew()); return s.final(); } bool ChannelAnalyzerNGGUI::deserialize(const QByteArray& data) { SimpleDeserializer d(data); if(!d.isValid()) { resetToDefaults(); return false; } if(d.getVersion() == 1) { QByteArray bytetmp; quint32 u32tmp; quint64 u64tmp; qint32 tmp, spanLog2, bw, lowCut; bool tmpBool; blockApplySettings(true); m_channelMarker.blockSignals(true); d.readS32(1, &tmp, 0); m_channelMarker.setCenterFrequency(tmp); d.readS32(2, &bw, 30); d.readBlob(3, &bytetmp); ui->spectrumGUI->deserialize(bytetmp); if(d.readU32(4, &u32tmp)) { m_channelMarker.setColor(u32tmp); } d.readS32(5, &lowCut, 3); d.readS32(6, &spanLog2, 3); d.readBool(7, &tmpBool, false); ui->ssb->setChecked(tmpBool); d.readBlob(8, &bytetmp); ui->scopeGUI->deserialize(bytetmp); d.readU64(9, &u64tmp, 2000U); ui->channelSampleRate->setValue(u64tmp); blockApplySettings(false); m_channelMarker.blockSignals(false); ui->spanLog2->setCurrentIndex(spanLog2); setNewFinalRate(spanLog2); ui->BW->setValue(bw); ui->lowCut->setValue(lowCut); // does applySettings(); return true; } else { resetToDefaults(); return false; } } bool ChannelAnalyzerNGGUI::handleMessage(const Message& message __attribute__((unused))) { return false; } void ChannelAnalyzerNGGUI::viewChanged() { applySettings(); } void ChannelAnalyzerNGGUI::tick() { double powDb = CalcDb::dbPower(m_channelAnalyzer->getMagSq()); m_channelPowerDbAvg.feed(powDb); ui->channelPower->setText(tr("%1 dB").arg(m_channelPowerDbAvg.average(), 0, 'f', 1)); } void ChannelAnalyzerNGGUI::channelizerInputSampleRateChanged() { //ui->channelSampleRate->setValueRange(7, 2000U, m_channelAnalyzer->getInputSampleRate()); setNewFinalRate(m_spanLog2); applySettings(); } void ChannelAnalyzerNGGUI::on_channelSampleRate_changed(quint64 value) { ui->channelSampleRate->setValueRange(7, 2000U, m_channelAnalyzer->getInputSampleRate()); if (ui->useRationalDownsampler->isChecked()) { qDebug("ChannelAnalyzerNGGUI::on_channelSampleRate_changed: %llu", value); setNewFinalRate(m_spanLog2); applySettings(); } } void ChannelAnalyzerNGGUI::on_useRationalDownsampler_toggled(bool checked __attribute__((unused))) { setNewFinalRate(m_spanLog2); applySettings(); } int ChannelAnalyzerNGGUI::getRequestedChannelSampleRate() { if (ui->useRationalDownsampler->isChecked()) { return ui->channelSampleRate->getValueNew(); } else { return m_channelizer->getInputSampleRate(); } } void ChannelAnalyzerNGGUI::on_deltaFrequency_changed(qint64 value) { m_channelMarker.setCenterFrequency(value); } void ChannelAnalyzerNGGUI::on_BW_valueChanged(int value) { m_channelMarker.setBandwidth(value * 100 * 2); if (ui->ssb->isChecked()) { if (value < 0) { m_channelMarker.setSidebands(ChannelMarker::lsb); } else { m_channelMarker.setSidebands(ChannelMarker::usb); } QString s = QString::number(value/10.0, 'f', 1); ui->BWText->setText(tr("%1k").arg(s)); } else { m_channelMarker.setSidebands(ChannelMarker::dsb); QString s = QString::number(value/5.0, 'f', 1); // BW = value * 2 ui->BWText->setText(tr("%1k").arg(s)); } on_lowCut_valueChanged(m_channelMarker.getLowCutoff()/100); } int ChannelAnalyzerNGGUI::getEffectiveLowCutoff(int lowCutoff) { int ssbBW = m_channelMarker.getBandwidth() / 2; int effectiveLowCutoff = lowCutoff; const int guard = 100; if (ssbBW < 0) { if (effectiveLowCutoff < ssbBW + guard) { effectiveLowCutoff = ssbBW + guard; } if (effectiveLowCutoff > 0) { effectiveLowCutoff = 0; } } else { if (effectiveLowCutoff > ssbBW - guard) { effectiveLowCutoff = ssbBW - guard; } if (effectiveLowCutoff < 0) { effectiveLowCutoff = 0; } } return effectiveLowCutoff; } void ChannelAnalyzerNGGUI::on_lowCut_valueChanged(int value) { int lowCutoff = getEffectiveLowCutoff(value * 100); m_channelMarker.setLowCutoff(lowCutoff); QString s = QString::number(lowCutoff/1000.0, 'f', 1); ui->lowCutText->setText(tr("%1k").arg(s)); ui->lowCut->setValue(lowCutoff/100); applySettings(); } void ChannelAnalyzerNGGUI::on_spanLog2_currentIndexChanged(int index) { if (setNewFinalRate(index)) { applySettings(); } } void ChannelAnalyzerNGGUI::on_ssb_toggled(bool checked) { setFiltersUIBoundaries(); int bw = m_channelMarker.getBandwidth(); if (checked) { QString s = QString::number(bw/2000.0, 'f', 1); // bw/2 ui->BWText->setText(tr("%1k").arg(s)); if (ui->BW->value() < 0) { m_channelMarker.setSidebands(ChannelMarker::lsb); } else { m_channelMarker.setSidebands(ChannelMarker::usb); } ui->glSpectrum->setCenterFrequency(m_rate/4); ui->glSpectrum->setSampleRate(m_rate/2); ui->glSpectrum->setSsbSpectrum(true); on_lowCut_valueChanged(m_channelMarker.getLowCutoff()/100); ui->lowCut->setEnabled(true); } else { QString s = QString::number(bw/1000.0, 'f', 1); // bw ui->BWText->setText(tr("%1k").arg(s)); ui->lowCut->setEnabled(false); m_channelMarker.setSidebands(ChannelMarker::dsb); ui->glSpectrum->setCenterFrequency(0); ui->glSpectrum->setSampleRate(m_rate); ui->glSpectrum->setSsbSpectrum(false); applySettings(); } } void ChannelAnalyzerNGGUI::onWidgetRolled(QWidget* widget __attribute__((unused)), bool rollDown __attribute__((unused))) { /* if((widget == ui->spectrumContainer) && (m_ssbDemod != NULL)) m_ssbDemod->setSpectrum(m_threadedSampleSink->getMessageQueue(), rollDown); */ } void ChannelAnalyzerNGGUI::onMenuDoubleClicked() { if(!m_basicSettingsShown) { m_basicSettingsShown = true; BasicChannelSettingsWidget* bcsw = new BasicChannelSettingsWidget(&m_channelMarker, this); bcsw->show(); } } ChannelAnalyzerNGGUI::ChannelAnalyzerNGGUI(PluginAPI* pluginAPI, DeviceSourceAPI *deviceAPI, QWidget* parent) : RollupWidget(parent), ui(new Ui::ChannelAnalyzerNGGUI), m_pluginAPI(pluginAPI), m_deviceAPI(deviceAPI), m_channelMarker(this), m_basicSettingsShown(false), m_doApplySettings(true), m_rate(6000), m_spanLog2(0), m_channelPowerDbAvg(40,0) { ui->setupUi(this); setAttribute(Qt::WA_DeleteOnClose, true); connect(this, SIGNAL(widgetRolled(QWidget*,bool)), this, SLOT(onWidgetRolled(QWidget*,bool))); connect(this, SIGNAL(menuDoubleClickEvent()), this, SLOT(onMenuDoubleClicked())); m_spectrumVis = new SpectrumVis(ui->glSpectrum); m_scopeVis = new ScopeVisNG(ui->glScope); m_spectrumScopeComboVis = new SpectrumScopeNGComboVis(m_spectrumVis, m_scopeVis); m_channelAnalyzer = new ChannelAnalyzerNG(m_spectrumScopeComboVis); m_channelizer = new DownChannelizer(m_channelAnalyzer); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); connect(m_channelizer, SIGNAL(inputSampleRateChanged()), this, SLOT(channelizerInputSampleRateChanged())); m_deviceAPI->addThreadedSink(m_threadedChannelizer); ui->deltaFrequencyLabel->setText(QString("%1f").arg(QChar(0x94, 0x03))); ui->deltaFrequency->setColorMapper(ColorMapper(ColorMapper::GrayGold)); ui->deltaFrequency->setValueRange(false, 7, -9999999, 9999999); ui->channelSampleRate->setColorMapper(ColorMapper(ColorMapper::GrayGreenYellow)); ui->channelSampleRate->setValueRange(7, 2000U, 9999999U); ui->glSpectrum->setCenterFrequency(m_rate/2); ui->glSpectrum->setSampleRate(m_rate); ui->glSpectrum->setDisplayWaterfall(true); ui->glSpectrum->setDisplayMaxHold(true); ui->glSpectrum->setSsbSpectrum(true); ui->glSpectrum->connectTimer(m_pluginAPI->getMainWindow()->getMasterTimer()); ui->glScope->connectTimer(m_pluginAPI->getMainWindow()->getMasterTimer()); connect(&m_pluginAPI->getMainWindow()->getMasterTimer(), SIGNAL(timeout()), this, SLOT(tick())); //m_channelMarker = new ChannelMarker(this); m_channelMarker.setColor(Qt::gray); m_channelMarker.setBandwidth(m_rate); m_channelMarker.setSidebands(ChannelMarker::usb); m_channelMarker.setCenterFrequency(0); m_channelMarker.setVisible(true); connect(&m_channelMarker, SIGNAL(changed()), this, SLOT(viewChanged())); m_deviceAPI->registerChannelInstance(m_channelID, this); m_deviceAPI->addChannelMarker(&m_channelMarker); m_deviceAPI->addRollupWidget(this); ui->spectrumGUI->setBuddies(m_spectrumVis->getInputMessageQueue(), m_spectrumVis, ui->glSpectrum); ui->scopeGUI->setBuddies(m_scopeVis->getInputMessageQueue(), m_scopeVis, ui->glScope); applySettings(); setNewFinalRate(m_spanLog2); } ChannelAnalyzerNGGUI::~ChannelAnalyzerNGGUI() { m_deviceAPI->removeChannelInstance(this); m_deviceAPI->removeThreadedSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; delete m_channelAnalyzer; delete m_spectrumVis; delete m_scopeVis; delete m_spectrumScopeComboVis; //delete m_channelMarker; delete ui; } bool ChannelAnalyzerNGGUI::setNewFinalRate(int spanLog2) { qDebug("ChannelAnalyzerNGGUI::setNewRate"); if ((spanLog2 < 0) || (spanLog2 > 6)) { return false; } m_spanLog2 = spanLog2; //m_rate = 48000 / (1<getInputSampleRate() / (1<spanText->setText(tr("%1 kS/s").arg(s)); if (ui->ssb->isChecked()) { if (ui->BW->value() < 0) { m_channelMarker.setSidebands(ChannelMarker::lsb); } else { m_channelMarker.setSidebands(ChannelMarker::usb); } ui->glSpectrum->setCenterFrequency(m_rate/4); ui->glSpectrum->setSampleRate(m_rate/2); ui->glSpectrum->setSsbSpectrum(true); } else { m_channelMarker.setSidebands(ChannelMarker::dsb); ui->glSpectrum->setCenterFrequency(0); ui->glSpectrum->setSampleRate(m_rate); ui->glSpectrum->setSsbSpectrum(false); } ui->glScope->setSampleRate(m_rate); m_scopeVis->setSampleRate(m_rate); return true; } void ChannelAnalyzerNGGUI::setFiltersUIBoundaries() { if (ui->BW->value() < -m_rate/200) { ui->BW->setValue(-m_rate/200); m_channelMarker.setBandwidth(-m_rate*2); } else if (ui->BW->value() > m_rate/200) { ui->BW->setValue(m_rate/200); m_channelMarker.setBandwidth(m_rate*2); } if (ui->lowCut->value() < -m_rate/200) { ui->lowCut->setValue(-m_rate/200); m_channelMarker.setLowCutoff(-m_rate); } else if (ui->lowCut->value() > m_rate/200) { ui->lowCut->setValue(m_rate/200); m_channelMarker.setLowCutoff(m_rate); } if (ui->ssb->isChecked()) { ui->BW->setMinimum(-m_rate/200); ui->lowCut->setMinimum(-m_rate/200); } else { ui->BW->setMinimum(0); ui->lowCut->setMinimum(-m_rate/200); ui->lowCut->setValue(0); } ui->BW->setMaximum(m_rate/200); ui->lowCut->setMaximum(m_rate/200); } void ChannelAnalyzerNGGUI::blockApplySettings(bool block) { ui->glScope->blockSignals(block); ui->glSpectrum->blockSignals(block); m_doApplySettings = !block; } void ChannelAnalyzerNGGUI::applySettings() { if (m_doApplySettings) { setTitleColor(m_channelMarker.getColor()); ui->deltaFrequency->setValue(m_channelMarker.getCenterFrequency()); m_channelizer->configure(m_channelizer->getInputMessageQueue(), //m_channelizer->getInputSampleRate(), getRequestedChannelSampleRate(), m_channelMarker.getCenterFrequency()); m_channelAnalyzer->configure(m_channelAnalyzer->getInputMessageQueue(), //m_channelizer->getInputSampleRate(), // TODO: specify required channel sample rate getRequestedChannelSampleRate(), // TODO: specify required channel sample rate ui->BW->value() * 100.0, ui->lowCut->value() * 100.0, m_spanLog2, ui->ssb->isChecked()); } } void ChannelAnalyzerNGGUI::leaveEvent(QEvent*) { blockApplySettings(true); m_channelMarker.setHighlighted(false); blockApplySettings(false); } void ChannelAnalyzerNGGUI::enterEvent(QEvent*) { blockApplySettings(true); m_channelMarker.setHighlighted(true); blockApplySettings(false); }