/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_DSP_PHASEDISCRI_H_ #define INCLUDE_DSP_PHASEDISCRI_H_ #include #include "dsp/dsptypes.h" class PhaseDiscriminators { public: /** * Reset stored values */ void reset() { m_m1Sample = 0; m_m2Sample = 0; } /** * Scaling factor so that resulting excursion maps to [-1,+1] */ void setFMScaling(Real fmScaling) { m_fmScaling = fmScaling; } /** * Standard discriminator using atan2. On modern processors this is as efficient as the non atan2 one. * This is better for high fidelity. */ Real phaseDiscriminator(const Complex& sample) { Complex d(std::conj(m_m1Sample) * sample); m_m1Sample = sample; return (std::atan2(d.imag(), d.real()) / M_PI) * m_fmScaling; } /** * Discriminator with phase detection using atan2 and frequency by derivation. * This yields a precise deviation to sample rate ratio: Sample rate => +/-1.0 */ Real phaseDiscriminatorDelta(const Complex& sample, double& magsq, Real& fmDev) { Real fltI = sample.real(); Real fltQ = sample.imag(); magsq = fltI*fltI + fltQ*fltQ; Real curArg = atan2_approximation2((float) fltQ, (float) fltI); fmDev = (curArg - m_prevArg) / M_PI; m_prevArg = curArg; if (fmDev < -1.0f) { fmDev += 2.0f; } else if (fmDev > 1.0f) { fmDev -= 2.0f; } return fmDev * m_fmScaling; } /** * Alternative without atan at the expense of a slight distorsion on very wideband signals * http://www.embedded.com/design/configurable-systems/4212086/DSP-Tricks--Frequency-demodulation-algorithms- * in addition it needs scaling by instantaneous magnitude squared and volume (0..10) adjustment factor */ Real phaseDiscriminator2(const Complex& sample) { Real ip = sample.real() - m_m2Sample.real(); Real qp = sample.imag() - m_m2Sample.imag(); Real h1 = m_m1Sample.real() * qp; Real h2 = m_m1Sample.imag() * ip; m_m2Sample = m_m1Sample; m_m1Sample = sample; //return ((h1 - h2) / M_PI_2) * m_fmScaling; return (h1 - h2) * m_fmScaling; } /** * Second alternative */ Real phaseDiscriminator3(const Complex& sample, long double& magsq, Real& fltVal) { Real fltI = sample.real(); Real fltQ = sample.imag(); double fltNorm; Real fltNormI; Real fltNormQ; //Real fltVal; magsq = fltI*fltI + fltQ*fltQ; fltNorm = std::sqrt(magsq); fltNormI= fltI/fltNorm; fltNormQ= fltQ/fltNorm; fltVal = m_fltPreviousI*(fltNormQ - m_fltPreviousQ2); fltVal -= m_fltPreviousQ*(fltNormI - m_fltPreviousI2); fltVal += 2.0f; fltVal /= 4.0f; // normally it is /4 m_fltPreviousQ2 = m_fltPreviousQ; m_fltPreviousI2 = m_fltPreviousI; m_fltPreviousQ = fltNormQ; m_fltPreviousI = fltNormI; return fltVal * m_fmScaling; } private: Complex m_m1Sample; Complex m_m2Sample; Real m_fmScaling; Real m_fltPreviousI; Real m_fltPreviousQ; Real m_fltPreviousI2; Real m_fltPreviousQ2; Real m_prevArg; float atan2_approximation1(float y, float x) { //http://pubs.opengroup.org/onlinepubs/009695399/functions/atan2.html //Volkan SALMA const float ONEQTR_PI = M_PI / 4.0; const float THRQTR_PI = 3.0 * M_PI / 4.0; float r, angle; float abs_y = std::fabs(y) + 1e-10f; // kludge to prevent 0/0 condition if ( x < 0.0f ) { r = (x + abs_y) / (abs_y - x); angle = THRQTR_PI; } else { r = (x - abs_y) / (x + abs_y); angle = ONEQTR_PI; } angle += (0.1963f * r * r - 0.9817f) * r; if ( y < 0.0f ) return( -angle ); // negate if in quad III or IV else return( angle ); } #define PI_FLOAT float(M_PI) #define PIBY2_FLOAT float(M_PI_2) // |error| < 0.005 float atan2_approximation2( float y, float x ) { if ( x == 0.0f ) { if ( y > 0.0f ) return PIBY2_FLOAT; if ( y == 0.0f ) return 0.0f; return -PIBY2_FLOAT; } float atan; float z = y/x; if ( std::fabs( z ) < 1.0f ) { atan = z/(1.0f + 0.28f*z*z); if ( x < 0.0f ) { if ( y < 0.0f ) return atan - PI_FLOAT; return atan + PI_FLOAT; } } else { atan = PIBY2_FLOAT - z/(z*z + 0.28f); if ( y < 0.0f ) return atan - PI_FLOAT; } return atan; } }; #endif /* INCLUDE_DSP_PHASEDISCRI_H_ */