mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-13 20:01:46 -05:00
305 lines
11 KiB
C++
305 lines
11 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
|
|
// Copyright (C) 2021 Jon Beniston, M7RCE //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// (at your option) any later version. //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <QDebug>
|
|
|
|
#include "dsp/dspengine.h"
|
|
|
|
#include "radioastronomy.h"
|
|
#include "radioastronomysink.h"
|
|
|
|
RadioAstronomySink::RadioAstronomySink(RadioAstronomy *aisDemod) :
|
|
m_radioAstronomy(aisDemod),
|
|
m_channelSampleRate(1000000),
|
|
m_channelFrequencyOffset(0),
|
|
m_fftSequence(-1),
|
|
m_fft(nullptr),
|
|
m_fftCounter(0),
|
|
m_fftSum(nullptr),
|
|
m_fftTemp(nullptr),
|
|
m_fftSumCount(0),
|
|
m_enabled(false),
|
|
m_cal(false),
|
|
m_magsqSum(0.0f),
|
|
m_magsqPeak(0.0f),
|
|
m_magsqCount(0),
|
|
m_messageQueueToChannel(nullptr)
|
|
{
|
|
m_magsq = 0.0;
|
|
|
|
applySettings(m_settings, true);
|
|
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
|
|
}
|
|
|
|
RadioAstronomySink::~RadioAstronomySink()
|
|
{
|
|
delete[] m_fftSum;
|
|
delete[] m_fftTemp;
|
|
}
|
|
|
|
void RadioAstronomySink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
|
|
{
|
|
Complex ci;
|
|
|
|
for (SampleVector::const_iterator it = begin; it != end; ++it)
|
|
{
|
|
Complex c(it->real(), it->imag());
|
|
c *= m_nco.nextIQ();
|
|
|
|
if (m_interpolatorDistance < 1.0f) // interpolate
|
|
{
|
|
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
|
|
{
|
|
processOneSample(ci);
|
|
m_interpolatorDistanceRemain += m_interpolatorDistance;
|
|
}
|
|
}
|
|
else // decimate
|
|
{
|
|
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
|
|
{
|
|
processOneSample(ci);
|
|
m_interpolatorDistanceRemain += m_interpolatorDistance;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RadioAstronomySink::processOneSample(Complex &ci)
|
|
{
|
|
// Calculate power
|
|
double magsqRaw = ci.real()*ci.real() + ci.imag()*ci.imag();
|
|
double magsq = (magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED));
|
|
|
|
// Calculate average and peak levels for level meter
|
|
m_movingAverage(magsq);
|
|
m_magsq = m_movingAverage.asDouble();
|
|
m_magsqSum += magsq;
|
|
if (magsq > m_magsqPeak)
|
|
{
|
|
m_magsqPeak = magsq;
|
|
}
|
|
m_magsqCount++;
|
|
|
|
if (m_enabled || m_cal)
|
|
{
|
|
// Add to FFT input buffer
|
|
m_fft->in()[m_fftCounter] = Complex(ci.real() / SDR_RX_SCALEF, ci.imag() / SDR_RX_SCALEF);
|
|
m_fftCounter++;
|
|
if (m_fftCounter >= m_settings.m_fftSize)
|
|
{
|
|
// Calculate FFT
|
|
m_fftWindow.apply(m_fft->in());
|
|
m_fft->transform();
|
|
m_fftCounter = 0;
|
|
|
|
// Calculate power and accumulate
|
|
for (int i = 0; i < m_settings.m_fftSize; i++)
|
|
{
|
|
Complex s = m_fft->out()[i];
|
|
Real v = s.real() * s.real() + s.imag() * s.imag();
|
|
Real enbw = 1.0f;
|
|
/*if (m_settings.m_fftWindow == RadioAstronomySettings::HAN && m_settings.m_fftCorrection == RadioAstronomySettings::POWER) {
|
|
enbw = 1.5; // FIXME: Small dependence on fftSize in Matlab
|
|
}*/
|
|
m_fftSum[i] += v / (enbw * m_settings.m_fftSize * m_settings.m_fftSize); // Why FFT size here and not Fs?
|
|
}
|
|
|
|
m_fftSumCount++;
|
|
if (m_fftSumCount >= m_settings.m_integration)
|
|
{
|
|
// Average
|
|
for (int i = 0; i < m_settings.m_fftSize; i++) {
|
|
m_fftSum[i] /= m_fftSumCount;
|
|
}
|
|
|
|
// Put negative frequencies first
|
|
std::copy(m_fftSum + m_settings.m_fftSize/2, m_fftSum + m_settings.m_fftSize, m_fftTemp);
|
|
std::copy(m_fftSum, m_fftSum + m_settings.m_fftSize/2, m_fftTemp + m_settings.m_fftSize/2);
|
|
|
|
// Filter freqs with RFI
|
|
if (m_filterBins.size() > 0)
|
|
{
|
|
// Find minimum value to use as replacement
|
|
// Should possibly use an average of the n lowest values or something
|
|
float minVal = std::numeric_limits<float>::max();
|
|
for (int i = 0; i < m_settings.m_fftSize; i++) {
|
|
minVal = std::min(minVal, m_fftTemp[i]);
|
|
}
|
|
for (int i = 0; i < m_filterBins.size(); i++)
|
|
{
|
|
int bin = m_filterBins[i];
|
|
if (bin < m_settings.m_fftSize) {
|
|
m_fftTemp[bin] = minVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
getMessageQueueToChannel()->push(RadioAstronomy::MsgMeasurementProgress::create(100));
|
|
|
|
if (m_cal)
|
|
{
|
|
// Indicate calibration complete
|
|
if (getMessageQueueToChannel())
|
|
{
|
|
RadioAstronomy::MsgCalComplete *msg = RadioAstronomy::MsgCalComplete::create(m_fftTemp, m_settings.m_fftSize, QDateTime::currentDateTime(), m_hot);
|
|
getMessageQueueToChannel()->push(msg);
|
|
}
|
|
|
|
// Cal complete
|
|
m_cal = false;
|
|
}
|
|
else
|
|
{
|
|
// Send averaged FFT to channel
|
|
if (getMessageQueueToChannel())
|
|
{
|
|
|
|
RadioAstronomy::MsgFFTMeasurement *msg = RadioAstronomy::MsgFFTMeasurement::create(m_fftTemp, m_settings.m_fftSize, QDateTime::currentDateTime());
|
|
getMessageQueueToChannel()->push(msg);
|
|
}
|
|
|
|
m_enabled = (m_settings.m_runMode == RadioAstronomySettings::CONTINUOUS);
|
|
if (m_enabled) {
|
|
getMessageQueueToChannel()->push(RadioAstronomy::MsgMeasurementProgress::create(0));
|
|
}
|
|
}
|
|
|
|
m_fftSumCount = 0;
|
|
std::fill(m_fftSum, m_fftSum + m_settings.m_fftSize, 0.0f);
|
|
}
|
|
else
|
|
{
|
|
// Don't send more than ~4 updates per second
|
|
int fftsPerSecond = m_settings.m_sampleRate / m_settings.m_fftSize;
|
|
if ((m_fftSumCount % (fftsPerSecond/4)) == 0) {
|
|
getMessageQueueToChannel()->push(RadioAstronomy::MsgMeasurementProgress::create(100 * m_fftSumCount / m_settings.m_integration));
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
void RadioAstronomySink::startMeasurements()
|
|
{
|
|
getMessageQueueToChannel()->push(RadioAstronomy::MsgMeasurementProgress::create(0));
|
|
m_enabled = true;
|
|
m_fftSumCount = 0;
|
|
std::fill(m_fftSum, m_fftSum + m_settings.m_fftSize, 0.0f);
|
|
}
|
|
|
|
void RadioAstronomySink::stopMeasurements()
|
|
{
|
|
m_enabled = false;
|
|
}
|
|
|
|
void RadioAstronomySink::startCal(bool hot)
|
|
{
|
|
getMessageQueueToChannel()->push(RadioAstronomy::MsgMeasurementProgress::create(0));
|
|
m_cal = true;
|
|
m_hot = hot;
|
|
m_fftSumCount = 0;
|
|
std::fill(m_fftSum, m_fftSum + m_settings.m_fftSize, 0.0f);
|
|
}
|
|
|
|
void RadioAstronomySink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
|
|
{
|
|
qDebug() << "RadioAstronomySink::applyChannelSettings:"
|
|
<< " channelSampleRate: " << channelSampleRate
|
|
<< " channelFrequencyOffset: " << channelFrequencyOffset;
|
|
|
|
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
|
|
(m_channelSampleRate != channelSampleRate) || force)
|
|
{
|
|
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
|
|
}
|
|
|
|
if ((m_channelSampleRate != channelSampleRate) || force)
|
|
{
|
|
m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.0f);
|
|
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_settings.m_sampleRate;
|
|
m_interpolatorDistanceRemain = m_interpolatorDistance;
|
|
}
|
|
|
|
m_channelSampleRate = channelSampleRate;
|
|
m_channelFrequencyOffset = channelFrequencyOffset;
|
|
}
|
|
|
|
void RadioAstronomySink::applySettings(const RadioAstronomySettings& settings, bool force)
|
|
{
|
|
qDebug() << "RadioAstronomySink::applySettings:"
|
|
<< " m_sampleRate: " << settings.m_sampleRate
|
|
<< " m_rfBandwidth: " << settings.m_rfBandwidth
|
|
<< " m_fftSize: " << settings.m_fftSize
|
|
<< " m_fftWindow: " << settings.m_fftWindow
|
|
<< " m_filterFreqs: " << settings.m_filterFreqs
|
|
<< " force: " << force;
|
|
|
|
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth)
|
|
|| (settings.m_sampleRate != m_settings.m_sampleRate)
|
|
|| force)
|
|
{
|
|
m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.0f); // 2.0 rather than 2.2 as in other plugins, to reduce rolloff at edge of band
|
|
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) settings.m_sampleRate;
|
|
m_interpolatorDistanceRemain = m_interpolatorDistance;
|
|
}
|
|
|
|
if ((settings.m_fftSize != m_settings.m_fftSize) || force)
|
|
{
|
|
FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
|
|
if (m_fftSequence >= 0) {
|
|
fftFactory->releaseEngine(m_settings.m_fftSize, false, m_fftSequence);
|
|
}
|
|
m_fftSequence = fftFactory->getEngine(settings.m_fftSize, false, &m_fft);
|
|
m_fftCounter = 0;
|
|
delete[] m_fftSum;
|
|
delete[] m_fftTemp;
|
|
m_fftSum = new Real[settings.m_fftSize]();
|
|
m_fftTemp = new Real[settings.m_fftSize]();
|
|
m_fftSumCount = 0;
|
|
}
|
|
|
|
if ((settings.m_fftSize != m_settings.m_fftSize)
|
|
|| (settings.m_fftWindow != m_settings.m_fftWindow)
|
|
|| force)
|
|
{
|
|
if (settings.m_fftWindow == RadioAstronomySettings::HAN) {
|
|
m_fftWindow.create(FFTWindow::Hanning, settings.m_fftSize);
|
|
} else {
|
|
m_fftWindow.create(FFTWindow::Rectangle, settings.m_fftSize);
|
|
}
|
|
}
|
|
|
|
if ((settings.m_filterFreqs != m_settings.m_filterFreqs) || force)
|
|
{
|
|
m_filterBins.clear();
|
|
QStringList filterFreqs = settings.m_filterFreqs.split(" ");
|
|
for (int i = 0; i < filterFreqs.size(); i++)
|
|
{
|
|
bool ok;
|
|
int bin = filterFreqs[i].toInt(&ok);
|
|
if (ok) {
|
|
m_filterBins.append(bin);
|
|
}
|
|
}
|
|
}
|
|
|
|
m_settings = settings;
|
|
}
|